-
/?fo M|

\7
THE EASY GUIDE TO YOUR

COLECO ADAM

THOMAS

The Easy Guide
to Your Coleco Adam

The Easy Guide
to Your Coleco Adam*

THOMAS BLACKADAR

/\ -
SYBEX™
\7
Berkeley « Paris ® Dusseldorf

Cover art by Sato Yamamoto
Book design by Mary Rose Ogren

Adam, ColecoVision, SmartBASIC, SmartLogo, SmartSheet, SmartWriter, and Super Action
are trademarks of Coleco Industries, Inc.

Apple and Apple II are trademarks of Apple Computer, Inc.

At:r'l. _A;a.riSoft, Atari 400, Atari 800, Atari 2600, VCS, and Centipede are trademarks of

tari, Inc.

Buck Rogers is a trademark of The Dille Family Trust.

Choplifter! and Lode Runner are trademarks of Br¢derbund Software, Inc.

Congo Bongo, Planet of Zoom, Zaxxon, and Sega are trademarks of Sega Enterprises, Inc.

CP/M is a trademark of Digital Research, Inc.

Defender is a trademark of Williams Electronics, Inc.

Donkey Kong is a trademark of Nintendo of America, Inc.

Dragon's Lair is a trademark of Magicom, Inc.

Facemaker, Kindercomp, and Snooper Troops are trademarks of Spinnaker Software, Inc.

Galaxian and Pac-Man are trademarks of the Midway Manufacturing Company.

IBM is a registered trademark of International Business Machines, Inc.

Music Construction Set is a trademark of Electronic Arts, Inc.

OmniWriter is a trademark of Human Engineered Software, Inc.

Shamus is a trademark of Synapse Software, Inc.

Star Trek is a trademark of Paramount Pictures Corp,

SuperCalc and SuperCalc 2 are trademarks of Sorcim, Inc.

SYBEX is a trademark of SYBEX Inc.

Zork 15 a trademark of Infocom, Inc

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX
assumes no responsibility for its use, nor for any infringements of patents or other nghts of
third parties which would result. Manufacturers reserve the right to change specifications at
any time without notice.

Copyright ©1984 SYBEX Inc. World Rights reserved. No part of this publication may be
stored in a retrieval system, transmitted, or reproduced in any way, including but not limited
to photocopy, photograph, magnetic or other record, without the prior agreement and written
permission of the publisher.

Library of Congress Card Number: 84-50364
ISBN 0-89588-181-0

Printed in the United States of America
10987654321

Acknowledgments

A book such as this is always a joint project, and many people
share the credit. I'd particularly like to thank Rudolph Langer, Paul
Panish, and David Kolodney for their support and advice in the
development of this project. Joel Kreisman contributed valuable tech-
nical assistance at all stages, and Amy Einsohn gave it a careful and
timely editing. Thanks also to these wonderful people who did so
much to turn a manuscript into a book: Valerie Robbins and Sarah
Seaver, word processing; Gloria Maya, typesetting; Janis Lund,
proofreading; and Mary Rose Ogren, design.

At Coleco, Kathleen McGowan and her staff were extremely help-
ful. I'd like particularly to thank Andi Freed for promptly sending
advance copies of Adam documentation. Without this support, this
project would have been more difficult.

SECTION 1

GCetting
Acquainted

Table
of Contents

INTRODUCTION

T MEET THE ADAM

Fear 3

What Is a Computer? 4
What Can It Do? 5

Setting up Your Computer 6
A Few Precautions 14

2 COMMERCIAL SOFTWARE
Buck Rogers: Planet of Zoom 18
How to Buy Software 23
Games 26
Serious Programs 28
How to Use Software 29
A Look Ahead 30

Xi

17

SECTION 2

The Word
Processor

SECTION3

Basic
Programming

3 EASY WORD PROCESSING 33

What Is a Word Processor? 33
Adam’s Electronic Typewriter 34
The Word Processor 38
Controlling the Cursor 40
Changing Letters 42

Word Processing Commands 43
Using the Printer 47

Advanced Word Processing 49
Summary 51

4 THE CASSETTE DRIVE 53

What Is the Cassette Drive? 53

Taking Care of Cassettes 54

Storing a Word Processor Document 56
Retrieving the Document 58

Other Forms of Storage 59

Summary 61

5 COMMANDS OF YOUR OWN 65

Loading the BASIC Tape 66

The BASIC Keyboard 67

RETURN and the Error Message 70
Your First Command: PRINT 72
Controlling the Screen 76

Optional Exercises 81

Summary 81

6 GRAPHICS 83

What Are Graphics? 83
Coordinates 84
Low-resolution Graphics 84

High-resolution Graphics 91
Optional Exercises 96
Summary 97

7 WRITING A PROGRAM

Storing Your Program 100

The Box-Drawing Program 106
Hints on Writing Programs 107
Debugging 108

Cassette Storage 109

Using the Printer 115

Optional Exercises 116
Summary 116

8 USING VARIABLES
Storing Numbers 117
Variables in Programs 121
The READ and DATA Statements 125
The INPUT Statement 127
Doing Calculations 130
Strings: Storing Letters 133
Optional Exercises 136
Summary 136

9 CONTROLLING YOUR PROGRAM
GOTO: Jumping to Another Statement
FOR/NEXT Loops 143
IF Statements: Making Decisions 150
GOSUB: Subroutines 154
Optional Exercises 157
Summary 157

AFTERWORD

Add-ons 159
Other Directions 160

117

139
140

159

Appendices

A FURTHER READING
B RererReNCE GUIDE TO BASIC

ANSWERS TO SELECTED EXERCISES

INDEX

179

163
165

175

Introduction

Coleco advertises its Adam'— computer as an “all-in-one” system.
The box you buy includes the computer, the keyboard, the printer,
and a built-in word processing program. With just these parts and a
television, you should be able to use the Adam as a full computer or
word processing system.

You can, but you will need a guide. You might think you can learn
the system by reading the manuals that Coleco provides. If you are
like most people, you will find that you won’t be able to. Coleco’s
manuals are difficult, disorganized, and at times misleading.

This book can be your guide, helping you learn quickly what you
need to know about your computer. In the course of this book, you will
set up your computer and begin to use it. You will learn about the built-
in word processor and find out where you can buy other programs that
let you start using your computer right away. Then you will learn how to
write your own programs, and how to store them on cassettes.

What do you need to know beforehand? Nothing. This is an easy
guide that assumes you have never used a computer before. You can
start from the very beginning, and move slowly enough to master the
concepts without needing to cope with computer jargon.

If you know a little already, you can still use this book. You may
want to skim through sections that you already understand, then read
more carefully once you get to the sections you still need to cover.

xii

I have tried to make this book both serious and enjoyable. I have
assumed that you are truly interested in learning about your Adam,
and that you want a clear, no-nonsense introduction. At the same
time, I have concentrated on the most attractive, entertaining features
of your Adam.

The chapters are grouped into three sections, to help you organize
your explorations. The first section, Getting Acquainted, will help you
learn the fundamentals of your machine. You will find out what the
Adam is, how to set it up, and how to buy programs that will let you
use your computer without knowing anything about how it works.

Section Two treats the word processor that is built into the Adam.
This section is kept intentionally short, since greater detail would tend
merely to confuse the point. While this brief introduction may skim
over some of the more specialized features of the Adam word processor,
it will explain everything you’ll need to know to create simple letters
and reports on your computer. If you want more information, you can
read one of the many books devoted to the Adam word processor.

Chapter Four, at the end of the Section Two, concerns the Adam’s
high-speed cassettes, or digital data packs. While this chapter is part of
the section on word processing, you should read it no matter what
you plan to do with your Adam, since you will want to use the cas-
settes to load and store programs. Other chapters may occasionally
refer you back to these descriptions.

Section Three moves into programming. The Adam system you
bought includes a version of the BASIC programming language. By
using this language you will be able to make your computer do
exactly what you want. You can start by typing simple commands
that do one thing at a time. Later, you can combine your commands
into larger programs in order to perform more complex tasks. BASIC
is one of the computer languages most commonly used today.

To use this book most effectively, you will need to have access to an
Adam computer. For most of the book, you should have your com-
puter sitting in front of you, so that you can try out the examples as
you read.

It doesn’t matter whether you have the full Adam system or the
Adam Expansion Module #3 with a ColecoVision game machine. The
set-up procedures in Chapter 1 explain the differences between the
two systems. Once you have them set up, the systems work in exactly
the same way.

I hope 'you will enjoy your reading. Computers may seem mysteri-
ous while you are an outsider, but after your first steps, you will be
able to continue on your own. This book merely aims to make those
first steps a little easier.

xiii

Chapter

Meet
the Adam

You have recently bought an Adam computer and are anxious to
start using it. You are curious to find out what your machine can do
and how you can control it.

This chapter is an overview. It gives some tips that will help you
become comfortable with your Adam, and detailed instructions on
how to set it up. By the end of the chapter, you will be ready to use
your computer.

FEAR

Before you begin your journey, you'll need to overcome your fears.
If this is your first experience with a computer, you may be a little
intimidated by it. You don’t have to be: a computer is a machine,
nothing more. Like a television set or a dishwasher, the computer can
help you if you learn how to use it, and it won’t bite you if you make
a mistake.

You don't need to worry that you might wreck your computer by
pressing the wrong key. Your Adam is an electronic device that
deserves the same care you give to a radio or a pocket calculator, but
you don’t have to be timid with it. There is little you can do in nor-
mal use that will harm it. At the very worst, you might lose the words
and numbers you have just typed, but you won’t hurt the machine.

Your Adam gives you a kind of panic button. This is the RESET
COMPUTER switch, located along the top of the computer, just to the
left of the cartridge slot. If you ever get lost or don’t know what’s

4

THE EASY GUIDE TO YOUR COLECO ADAM

happening, you can always pull this switch. Your computer will go
back to the way it was when you turned it on, ready to start again.
If that doesn’t do the trick, you can always turn the power off and
back on.

If you have some lingering fears, play a game. There is no better
way to become comfortable with a computer than to have fun with it.
In Chapter 2 of this book, I'll tell you about some of the best Adam
games, but for now you might as well start with the one that came
with the machine, Buck Rogers: Planet of Zoom. Adam’s home ver-
sion of this game is a sure-fire cure for computer fear.

WHAT IS A COMPUTER?

How does a computer work? You don’t need to know. You can
think of it as a closed box that takes in information, churns it around,
and spits out the results. Along the way, it must do many complex
operations, but that’s not something you need to concern yourself
with. Just think about what goes in and what comes out.

You talk to the computer through its keyboard. The Adam has a full
set of typewriter keys that let you type letters, numbers, and special
symbols. You will use these keys for all your communications with the
computer.

To talk back, the computer has an electronic circuit that can display
words and pictures on your television screen. So, as you type letters
on the keyboard, your computer shows them on the screen. Then, if
it needs to give an answer, it displays that as well. With graphics, you
can also have the computer draw pictures on the screen.

The computer has a memony, so that you can store information for
future reference. You can use this memory to save the lines of a pro-
gram, the numbers you will use in a future calculation, or the words
of a text you are writing.

How much you can store depends on the size of your computer’s
memory, which is measured in bytes. A byte is roughly the space
needed to store a single letter or a three-digit number. The size of a
computer’s memory is usually stated as a number followed by the let-
ter K, which represents roughly a thousand bytes (1024 to be exact).
One K would hold about one third of this page.

For the purposes of this book, you won’t need to worry about
the size of your computer’s memory. The Adam has 80K bytes built

MEET THE ADAM

in—more than enough for anything in this book. While you can buy
a memory expansion that adds another 64K, you will rarely need this
unless you plan to use very complex programs.

When you turn the computer’s power off, everything you have
stored in its memory is erased. To store information permanently, you
must use the Adam’s digital data drive, which is built into the front of
the main computer unit, This is a high-speed cassette player that lets
you store information on a cassette tape, so that you can reuse it at a
later date. It also lets you load other people’s programs into your
computer, so that you can use your computer in different ways.

The Adam also comes with a printer, which lets it type words on a
sheet of paper. The printer is a necessary companion to the word pro-
cessor, since your ultimate aim is to produce a text that could be mis-
taken for a typewriter’s. In other programs, you may also want to use
the printer to obtain a permanent record of your work.

WHAT CAN IT DO? ——— e

Your Adam can perform complex calculations quickly and easily,
display bar graphs, and paint colorful pictures on your television
screen. With its built-in word processing program, it lets you revise a
letter without retyping it. And of course, it can play games.

The computer’s great strength is its flexibility. It can do calcula-
tions if you wish, or limit itself to letters and words. It can react to
whatever you type on the keyboard and arrange the screen display as
you direct. With its memory, it can store and arrange information in
many useful ways.

You control your computer with a program, a detailed list of instruc-
tions that it follows like a recipe, step by step, to perform its task.
The program can be as simple or as complicated as you like, and can
ask the computer to make decisions as it works. Programs are often
called software.

The Adam has one program built right into the machine: the word
processor. As you turn your computer on, it automatically begins run-
ning this program so that you can use your Adam as an intelligent
typewriter. You don’t need to know anything about the computer to
use this program. You just type and let the computer handle the
details. This word processing program is described in Section Two of
this book.

5

6

THE EASY GUIDE TO YOUR COLECO ADAM

When you bought your Adam, another program was included in
the box—the Buck Rogers: Planet of Zoom game. You can play this
interesting video game without any special equipment—ijust follow the
directions in Chapter 2.

You can buy many other programs from Coleco and other compan-
ies. You can use most of this commercial software without knowing how it
works. You just give your computer general instructions and answer a
few questions, then let the program take care of the details. Chapter 2
of this book is an introduction to some of the software that you can
buy. Games are very popular, and widely available for the Adam. You
can also buy programs for more serious purposes, such as education
or home management.

At some point, you may want to write your own programs, so that
you can do exactly what you want with your computer and use it to
its full potential. In the later chapters of this book, you will learn
about the Adam’s SmartBASIC programming language, which will
let you write your own programs and explore the deeper aspects of
your machine.

SETTING UP YOUR COMPUTER

The Adam comes in a very large box. When you open it up, you
find three large pieces of equipment and a variety of smaller items.
The three main pieces are the printer, the keyboard, and the com-
puter itself. Once you have connected these, you will be able to use
your computer immediately.

The only thing you’ll need that does not come with your computer
is a television set. You can use any set, but you will get the best results
from newer models. Televisions more than ten years old may give a
Jittery screen image.

A color television is strongly recommended. Your Adam has an
excellent color graphics system that can display brilliant colors. Many
of the programs in this book take advantage of these displays. While
you can run them on a black-and-white television, you will be missing
a lot.

If you are selecting a television to use with your computer, you
should probably choose a small or medium-sized screen. Screens mea-
suring 10 to 15 inches are quite large enough to be readable. Larger
screens are unnecessary and often harder to read.

MEET THE ADAM

The Adam also allows you to hook up a color monitor instead of a tele-
vision. A monitor looks like a television, but lacks a tuner and thus
cannot be used to receive broadcasts. A monitor will usually give a
clearer picture than a regular television.

Coleco sells two versions of the Adam. One is the “full” Adam
computer system, which you can use all by itself. The other is the
Adam Expansion Module #3, designed to work with the ColecoVision
video-game system. If you already own a ColecoVision, you can save
over a hundred dollars by buying the expansion system; otherwise,
just buy the full Adam. Once you have everything connected, the two
versions work identically.

You can do the set-up yourself with nothing more than a screw-
driver. The Adam Set-Up Manual that comes with your computer
contains detailed instructions on setting up the machine, complete
with pictures. Unfortunately, you will get so bogged down in the
details of that manual that you may never get through it. I suggest
you try my instructions instead: I have arranged the steps in an order
that should be easier to follow. Don’t be concerned if I tell you to
do things in a slightly different way than the manual. Both methods
will work. -

When you open the box, lay each of the pieces out on the floor.
Unpack the box carefully, and make sure you don’t lose anything.
Once you've sorted through the styrofoam, you should find three
major items: a printer, a keyboard, and the computer itself.

The first step is to hook up the printer. All the electricity for the entire
Adam system must go through the printer, so you must have it con-
nected even if you don’t plan to use it. Fortunately, the hookup is easy.

Set the printer on a flat surface. Remove the styrofoam packing
material that is holding the ribbon and print wheel in place, then turn
the unit around, as in Figure 1.1, so that you can see where you will
be making your connections. Never set anything on top of the
printer: it’s a mechanical beast that needs space to operate. Above all,
never put a cassette tape on top of the printer, since its motors can
erase the magnetic recordings.

Find the power switch on the back panel and make sure it is in the
OFF position. While the Adam’s cables are not dangerous to touch, it is
a good practice always to turn the power off before making connections.

The Adam printer has two cords coming out of the back, as you
can see from Figure 1.1. One is a long black cord that you can

8

THE EASY GUIDE TO YOUR COLECO ADAM

Figure 1.1: The back of the Adam printer, where you will make your
first connections.

connect to a power outlet in your house. Don’t connect this yet, but
remember that it is the source of power for the entire system.

The other cable coming out the back of the printer is a gray cord
with a long connector on the end. This is the umbilical cord that links
the printer to the rest of the system. Through it, the computer will
obtain its electricity; in return, it will send electronic signals back to
the printer whenever it needs to type something on paper.

Set the main computer unit on your table and connect the printer’s
gray cable to the slot on the left side. It will fit only one way, with the
cable going out the back. All the remaining connections take place on
the back of the computer.

If instead of the full Adam you are using the Adam Expansion
Module #3 for the ColecoVision video-game machine, there is an extra
step at this point. Put your ColecoVision on the plastic tray that came
in the box with your Adam. Lift the black plastic door on the front of
the game machine, then slide the Adam Expansion into it. By doing
this, you are connecting the Adam Expansion to your ColecoVision, so
that the two will act as one unit. Except for the placement of the con-
nections, the combined system will work exactly like the full Adam. All
the power for the system will come through the Adam printer: you will
no longer use the game machine’s power source.

Whichever version you have, you now need to make some connec-
tions to the main computer box. All the following steps refer to the

MEET THE ADAM

connections on the full Adam system. If you have a ColecoVision
game machine and the Adam expansion, the connections will be the
same, but some of the terminals will be on the game machine, rather
than on the Adam.

The next step is to connect your computer to your television. For
this, you will need to use the small switch box that came with your
computer. These come in several forms, but yours probably looks like
the one in Figure 1.2.

The switch box allows you to connect your television to your
Adam, yet still use it for regular TV reception when you aren’t run-
ning the computer. The box has a small black pin that you can shde
between two positions, When it is in the COMPUTER position, your
television will display the computer’s images. Slide the pin back into
the TV position to watch television programs.

Start by connecting the switch box to your television. Disconnect
the antenna or rabbit ears. On most sets, the antenna is connected by
a double cable to two screws labeled VHF on the back of the set.
Loosen these screws and remove the wires. You don’t need to discon-
nect the UHF antenna, if you have one. (If you are connected to a
cable TV system, see below.)

The switch box has a pair of short wires coming out one end. Con-
nect these wires to the two screws you have just loosened, then tighten
the screws.

Figure 1.2: The switch box.

9

10

THE EASY GUIDE TO YOUR COLECO ADAM

On the side of the switch box with the label CONNECT TO
ANTENNA, you will find another pair of screws. If you plan to use
your set to watch television programs as well as your computer dis-
play, loosen these screws and attach the wires from your television’s
antenna. When the switch is set in the TV position, your antenna will
be connected just as if you had never removed it from the set.

If you subscribe to a cable network, your television is probably con-
nected with a single round plug instead of a pair of screws. If so, you
have to buy an adapter to connect to the screws. You can find one in
a television or electronics store. Try Radio Shack.

Find the black cable that comes with the computer. It should be
about six feet long, and have a round metal plug on each end. Connect
one end to the hole in the COMPUTER side of the switch box. Then
connect the other end to the hole labeled TV on the back panel of the
computer. If you have the ColecoVision game machine and the Adam
Expansion Medule, use the terminal on the back of the game machine.

You can have your television receive the computer’s signal on
either channel 3 or 4. You will generally get less interference if you
choose the one not used by a television station in your area. Set the
channel-selector switch on the back of your computer, then tune your
television to the same channel.

For simplicity, I have neglected to cover a few possibilities here.
You may have a television that has only a round connector, or an
antenna attached through a round ‘‘coaxial” cable. If so, you should
read the instructions in the Adam Set-Up Manual. Also, if you are using
a monitor instead of a television, you will need to connect it directly
with a cable to the MONITOR or VIDEO OUTPUT on the back of
the computer, rather than using the switch box. Your monitor should
contain the necessary cables and instructions.

The last major piece of equipment you must connect to the Adam
system is the keyboard. Find the white cable that looks like your
telephone cord and has a small ““modular” plug on each end. Plug one
of these into the back of the keyboard and the other into the hole
on the front of the computer unit. It should snap in, just like the cords
on your telephone.

If you have followed these directions, your system should look
like the one in Figure 1.3. At the center is the Adam computer mod-
ule (or the ColecoVision game machine linked to the Adam expan-
sion module). The three other pieces are attached to it like the

MEET THE ADAM

spokes of a wheel: the printer through its gray umbilical cord,
the television through the switch box, and the keyboard through its
telephone cable.

That’s it for the essential connections. You can now use your Adam
as a full computer system, complete with keyboard, screen, and printer.
Nothing else is necessary, but you might want to connect the other
items while you're at it.

W T

JHIHHH

e

Figure 1.3: The full Adam system consists of the computer console, the printer,
the television, and the keyboard.

1

12

THE EASY GUIDE TO YOUR COLECO ADAM

The most important pieces that remain in the box are the two game
controllers, or joysticks, as they are called. These are a pair of white
boxes with small round handles and a numeric keypad. If you play a
game, you can use these handles to move your characters around the
screen. The joysticks also have two fire buttons, located along the left
and right sides. The buttons serve various purposes, usually to fire a
shot of some kind.

Along the right side of your Adam (or on your game machine if
you are using the ColecoVision Expansion), you will find two rectan-
gular holes. These are where you connect the joysticks. Generally,
you will be using only the first of the two joysticks, saving the other
for two-person games.

If you want, you can attach one of the joysticks to the side of the
keyboard, using the plastic holder that comes with your computer. By
doing this, you can move around a word processor text by pressing on
the joystick handle. You can also use the joystick’s keypad as a con-
venient alternative for entering numbers. The second joystick must
remain loose.

If you check the machine’s packing box, you will find a few other
items, including three cassette tapes. Put these aside in a safe place.
You will need them later.

Now it’s time to turn on the power. Attach the power cable from
the back of the printer to an electric outlet in your house. As you can
see, the Adam has a three-pronged plug, which must be connected to
a three-pronged outlet. If you have only two-pronged outlets in your
house, you can use the adapter that Coleco provides (except in Can-
ada, where such adapters are illegal). Make sure you connect the
adapter to the central screw on the wall plug. This will help to protect
the computer and make it safer to operate.

Now turn on the power— first on your television, then on the back
of the printer. The printer should whirr a bit, then stop with a clack.
Your television, once it has warmed up, will show the message
ADAM’S ELECTRONIC TYPEWRITER, as in Figure 1.4. If the
image is fuzzy, adjust the fine tuning on your television. If the
screen’s background isn’t light blue, or if the box displaying the mes-
sage isn't yellow, adjust the color, tint, and brightness controls on
your set. You may need to turn off the automatic fine tuning (AFT)
or automatic color controls: some televisions provide a better image
when adjusted manually.

MEET THE ADAM

ADAM '5 I v | Vi
ELECTRONIC TYPEWRITER MARGIN 7 R

Figure 1.4: You should see this picture on your screen when you turn
on your Adam.

If you can’t get any picture or can’t get a sharp image, you may have
done something wrong. The problem could be any of the following:

* You have forgotten to turn on the computer or the televi-
sion, or have forgotten to plug them in.

* You have not connected the cable from the printer to the
computer. All the power goes through this cable, and noth-
ing will work if it isn’t attached properly.

* The cable from the computer to the switch box is not con-
nected securely. Try wiggling the connections to see if this
helps.

* You have not securely tightened the wires from the switch
box to the VHF screws on the television.

* The switch box is not in the COMPUTER position.

* Your television is not tuned to the same channel (3 or 4) as
your computer. Try changing to the other channel.

13

14

THE EASY GUIDE TO YOUR COLECO ADAM

Sadly, there could be another explanation: your computer might be
defective. If you have checked all your connections and still can’t
make your computer work, you should see your dealer. If your
machine is defective, the dealer can give you advice and can replace
the machine if necessary. If you can’t get good service from your
dealer, call Coleco’s customer service hotline (800-842-1225; in Can-
ada, 800-361-2122).

A FEW PRECAUTIONS

There have been some reliability problems with the Adam. Coleco
has made great efforts to improve its machine, but you should still
be aware of the problem. If you take a few precautions, you should be
able to avoid most troubles.

In the first few months after the Adam was introduced, many of the
units sold had minor defects of one kind or another. Coleco has since
improved its quality-control process, but you should check out your
machine as soon as you bring it home. Follow the check-out proce-
dure in the Hints and Tips booklet that comes with your Adam.
If there is a serious problem, it will probably show up in these tests. If
you find anything wrong, call your dealer immediately, while you’re
covered by the warranty.

Leave your machine on overnight during the first week. Most
defects show up in the first 24 hours of use. By leaving the machine
on, you can see immediately whether it is going to fail. This test
doesn’t use much electricity, and it won’t hurt the machine. If the
computer survives this initial dum-in, it will probably work well for a
long time. If any problems show up during this burn-in, you’re still
covered by the warranty.

Observe two precautions during this burn-in procedure. First,
make sure the printer has enough ventilation—it will get fairly hot
if it’s not out in the open. Second, turn off the television that you
have connected to the computer. You can permanently damage
the phosphors on the TV screen by displaying the same image for
a long time.

Even if your Adam is working perfectly, you may occasionally run
into a few minor design flaws. Both the built-in word processor and
the SmartBASIC programming language have some features that just
don’t work the way they are supposed to. These bugs, as they are

MEET THE ADAM

called, are part of the machine itself, so you have to learn to work
around them.

Fortunately, most of the bugs are minor, and they don’t disrupt the
computer’s important functions. Still, you should be aware of them,
so that you won’t be puzzled when the machine doesn’t do what you
expect. Throughout this book, I will point out some of the bugs you’ll
need to watch out for. In most cases, you won’t harm anything if you
do encounter a bug, but you may have to turn off the computer and
start again.

Pay careful attention to the series of precautions in Chapter 4 con-
cerning the cassette tape drive. The Adam’s high-speed cassette sys-
tem is very convenient but must be treated with considerable care.
Cassette tapes must be handled and stored correctly to prevent dam-
age. Read pages 54-56, near the beginning of Chapter 4, before you
use a tape for the first time. If you follow these guidelines for handling
cassettes, you should have little trouble.

Owverall, your Adam should be quite reliable. If it is not, you will
probably discover the problem before the end of the warranty period,
and can exchange it for a unit that will give you good service.

We have now reached the end of the preliminaries. Your machine is
set up, and you are waiting to go. With the next chapter, you will
start using it. Good luck, and enjoy yourself.

15

Chapter

Commercial
Software

In the first chapter, you learned something about how your Adam
computer works. You set it up, turned it on, and saw the message
ADAM’S ELECTRONIC TYPEWRITER on your screen. Now
you are eager to do something.

There are two ways you can approach the Adam for the first time.
Your television screen suggests one of these: with no additional equip-
ment, you can use the Adam’s word processor as a typewriter.

The other way to begin using your computer is to buy programs
written by other people. In many cases, you can simply load a pro-
gram into the computer and start it running. You don’t need to know
anything about how the computer works or how to write programs.

This chapter is devoted to this second approach. You will learn how
to play the game that comes with your computer—Buck Rogers:
Planet of Zoom. You will learn what other kinds of software you can
buy and how you might use them.

If you are primarily interested in the word processor, you should
skip straight to Chapter 3. Nothing in that chapter will assume knowl-
edge of anything you might read here.

You can buy all sorts of software from Coleco and other manufac-
turers. Games are the most popular, but excellent programs are also
available in other areas, such as education, home finance, and music.

This chapter begins with a description of the Buck Rogers: Planet
of Zoom game. With some hints on starting the game and a few basic
strategies, you will be able to play immediately.

The rest of the chapter discusses some of the other programs that
you can buy for your Adam. While this survey is not a full buyer’s

18

THE EASY GUIDE TO YOUR COLECO ADAM

guide, it includes some tips on good programs. It also mentions the
things you should know as you shop, so that you can protect yourself
from some of the bad programs that are sold alongside the good.

This chapter ends with some hints on how to use the programs you
have bought. Although most programs come with an instruction book
that explains the details of operation, my advice can help get you
started.

BUCK ROGCERS: PLANET OF ZOOM

If you like games, you might want to start by playing the one that
comes with your computer—Buck Rogers: Planet of Zoom. This
game, based on the Buck Rogers novels, was originally a video-
arcade game, made by Sega Enterprises. Coleco bought the rights to
adapt the game and sell it as a part of its Adam system. While it is
hardly the best game available for the Adam, you may as well start
with it, since it’s free.

In the game you fly a spaceship through a variety of terrains. The
object is to shoot as many flying saucers as you can within the time
limit. There are ten different screens, or sectors, in each round of the
game, and each presents a variety of dangers, enemies, and obstacles.
As your skill increases, you will work your way through each of the
sectors, until you reach the enemy’s mother ship. If you can disable
this ship, you fly into a space-warp tunnel and reach the next round
of the game.

The first screen, shown in Figure 2.1, is a long trench. As you fly
forward, the sides and floor seem to move past you. By moving your
joystick handle, you can go in any direction you want. Left or right
moves the spaceship horizontally. Up or down changes the altitude, as
you can see by watching the shadow on the floor. Your range of
motion 1s limited so that you cannot crash into the walls or climb out
of the trench.

In this first screen, you face three types of attackers. The most com-
mon are the flying saucers, which swirl in from behind and circle
back to collide with you. Occasionally, you must also shoot or avoid a
bomb that falls slowly from the top of the screen and explodes in
front of you. Finally, at the end of the level, you must face a num-
ber of bouncing tripeds, which jump around the trench and try to land
on top of you.

UFO COUHNHT -

" IHll!!!lH!WI!!!|| |

]'::l-.,ﬁ;i..-r: L

Figure 2.1: The first sector of Buck Rogers: Planet of Zoom

On each side of your joystick, there is a small fire button. With the
right-hand button, you can shoot forward to destroy attackers, so that
you can gain points and move safely toward the end of the trench
The left-hand button applies power to the spaceship’s engines, so that
the game moves faster.

At the top of the screen, a small colored bar shows the time that
vou have left in the trench to shoot the attackers. Below that is a num-
ber that represents the UFO COUNT, or the number of attackers
remaining. If you can shoot all the UFOs in the given time, you
receive a bonus and proceed to the next sector. If your time runs out,
you do not receive a bonus, but you can still continue with the next
part of the game.

In some of the other sectors, you face other forms of attack. Some,
for example, put you out in space, where you must shoot saucers and
avoid asteroids. In others, you may find yourself above the surface of
the Planet of Zoom, trying to fly through obstacles. Sector 3, shown in
Figure 2.2, is one of the most interesting. Here you must fly carefully
between pairs of futuristic electricity towers, while stll shooting saucers.

20

THE EASY GUIDE TO YOUR COLECO ADAM

The ultimate goal is to reach the enemy’s mother ship in Sector 9.
When you reach this sector, you must shoot out the mother ship’s
four main engines, while still avoiding the enemy’s fighter planes.
Once you have disabled the ship, you can shoot through its central
door and reach the tenth and final sector, a trenchlike space warp. If
you can negotiate this final sector, you return to the first and begin
the sequence again. This second round is somewhat more difficult
than the first, but presents the same obstacles.

To play the game, you will need to have at least one of your joy-
sticks attached to your computer. You can use a black-and-white TV,
but a color set is better: you will be able to see your enemies much
more easily if they are set off from the background by their colors.

Before you can play, you have to load the program from the cas-
sette tape into the computer’s memory. To do this, you must use the
digital data drive on the front of the main computer unit.

On the top of the computer, just above the door for the cassette, is
a small plastic latch marked EJECT. Pull it, and the door will spring

Tl |-||:-||&ug_||i|ij gi.ﬁ. ‘31'1

Figure 2.2: In Sector 3, you must fly between sets of electricity pylons on
the surface of the planet,

COMMERCIAL SOFTWARE

open so that you can insert the tape, as shown in Figure 2.3. Hold the
tape as shown, with the label facing outward and the recording sur-
face facing down into the drive. If you have inserted it correctly, you
can close the door, just as you would on a stereo cassette recorder.

A few precautions are in order at this point. The Adam cassette
tapes are rather fragile and easily damaged. If you erase any part of
the recording surface or the encoded information, you may no longer
be able to load the program. So, be careful to observe these three
don’ts:

* Don’t touch the magnetic recording surface with your fingers.

* Don’t leave the tape in the computer when you turn it on
or off.

* Don’t put the tapes on top of the printer, the television, or
any other device capable of producing a magnetic field.

If you're careful, your tapes should last a long time. Chapter 4 gives
more detailed instructions on how to handle tapes.

Is your Adam turned on, with ADAM’S ELECTRONIC TYPE-
WRITER on the screen? If not, turn it on and wait for the typewriter
screen. You must always go through the word processor’s initial dis-
play on your way to running any other program. While you can have
the Adam automatically load a cassette program by turning the com-
puter on with the tape in the drive, you risk damaging your program
if you do it that way.

el L N YT T
= ‘Hl?l)ll L L P T IT] ‘,f ///////

/
!

Figure 2.3: How to insert a cassette tape.

21

22

THE EASY GUIDE TO YOUR COLECO ADAM

Find the RESET COMPUTER switch next to the cartridge slot on
the top of the computer, then pull it toward you. The screen will go
blank and the cassette drive will start to spin as it loads the program.
You can use the RESET COMPUTER switch any time you want to
start or restart a program.

The computer will start by asking you how many people are play-
ing, and what skill level you want to use. Choose skill level 1
(BEGINNER) unless you have played the game many times.

After a moment, you will find yourself in the first sector, the trench
shown in Figure 2.1. Start by practicing your joystick flying controls.
They respond more or less the way you would expect, but you may
still need a few minutes to become accustomed to them.

Try firing some shots at the flying saucers that appear. Your bullets
travel forward down the trench and hit the enemy if correctly aimed. If
they miss when it seems they shouldn’t, they were probably traveling at
the wrong altitude. You cannot really judge this vertical dimension, but
you will become better with practice.

Don’t be upset if you can’t master the game right away. The first
few times you play may be a bit discouraging, until you get used to
flying and shooting at saucers. Stick with it and keep trying things
until something works.

Even if you don’t shoot any saucers, you will eventually reach the
second game screen just by waiting for the time to run out. This sec-
tor takes place in outer space, with a series of colored bars moving
above and below to give perspective.

You may find this wave slightly frustrating, since it is hard to hit
the UFOs. Unlike the first sector, your shots here travel straight up
and down the screen, not into the distance. Thus you may find it
rather hard to visualize where they are going and how you should
aim. Fortunately, the attackers will rarely hit you either, so you will
eventually reach the third sector just by waiting.

In this third sector, you must fly between the electricity pylons,
shown in Figure 2.2, The trick here is to fly as low as you possibly
can. The distance between the pylons is greater at this low altitude,
and the UFOs will rarely run into you down there. You can therefore
concentrate on maneuvering between the pylons and can often hit
UFOs simply by shooting straight ahead.

If you can get through these first three sectors, you are well on your
way. Many of the others are similar to these three and can be handled

COMMERCIAL SOFTWARE

in the same way. By reading the instructions on the card that comes
with the computer, you can get a feel for what you will be facing in
the rest of the game.

After each game, the computer lets you enter your name and save
the game’s high score. To spell out your name, use the joystick to
move the pointer to the appropriate letter on the screen, then press
the left fire button. After you've entered all the letters, hold the right
fire button down and push the joystick handle to the right until the
underline reaches the word DONE at the top of the screen. Then
press the left fire button and the game will start over. If you don’t
want to enter your name, you can skip this whole procedure and
restart the game by pressing the * button on the joystick’s keypad.

When you’ve finished playing for the day, you must take the tape
out of the tape drive before you turn the computer off. Wait until the
tape stops, if it is turning, then pull the EJECT switch on the top of
the drive. The end of a game is a good time to remove the tape: the
drive always stops turning while it waits for you to enter your name.
Put the tape away in its plastic case. If you want to use the word pro-
cessor or another cassette game, pull the RESET COMPUTER
switch. Otherwise, just turn the computer off with the power switch
on the back of the printer.

Buck Rogers: Planet of Zoom is a fairly interesting game in some
ways. The simulated three-dimensional motion is quite convincing at
times, and the action can be enjoyable once you have gotten used to
it. Don’t judge it too harshly, though, if you think it’s not the world’s
best video game. Coleco included it merely as an example of some of
the programs you can buy for your Adam. Better games and other
programs are available.

HOW TO BUY SOFTWARE

Coleco sells many programs for its Adam, and many more are
available from other sources. From this large selection, you should
have no trouble finding some that suit your needs.

Programs are sold for the Adam on cartridges, cassettes, or disk-
ettes. Games tend to be sold as cartridges, although the more complex
will soon appear on cassette. Serious programs are usually sold on
cassette or diskette.

23

24

THE EASY GUIDE TO YOUR COLECO ADAM

A cartridge stores its program in an electronic circuit, which the
computer can read directly. Because it plugs directly into the com-
puter and cannot be erased, a cartridge is generally more convenient
and more durable than other forms of software.

The cartridge slot on the top of the Adam will accept any cartridge
made for the ColecoVision video-game system. Since that machine
has been popular for some time, many games are readily available for
it. If you buy one of these, usually marked COLECO in the store,
you can plug it in and use it immediately.

In general, you can use only cartridges made expressly for the Col-
eco. Game cartridges made for other computers and game machines
will not fit in the Adam’s cartridge slot, and would not work even if
they did. This lack of compatibility is a sad fact of life in the home
computer industry.

By buying Coleco’s Expansion Module #1, you can gain access to
cartridges made for one other type of machine: the Atari 2600 video-
game machine (sometimes called the VCS). Since the Atari 2600 is
the most widely sold game machine ever, more games are available
for it than for any other machine. Atari, Parker Brothers, Activision,
and even Coleco make game cartridges for the 2600.

There’s a catch, though. The Atari 2600 is a relatively primitive
game machine, which is far outclassed by the newer home computers.
The graphics, in particular, are notoriously limited, so that arcade
games are only a pale reflection of the originals. If you play a 2600
game on your Adam, you will have these same limitations, and you
will probably be quite disappointed with it, compared to a game made
specifically for the Coleco.

One other note, if you’re thinking of buying the Atari expansion
module: the Atari 2600 is not part of Atari’s line of home computers
and will not run the same cartridges. Even if you have the expansion
module, you will not be able to use programs written for the Atari
400, 800, or XL series computers.

Another form in which you can buy Adam software is the digital
data pack, a glorified name for a cassette tape. Coleco’s game cassettes
have the program encoded as magnetic markings on its surface. With
the cassette drive built into your system, the computer can decode,
store, and use these messages.

Coleco’s cassettes are an improved version of the tapes you might
use with a stereo cassette recorder. The computer can read them

COMMERCIAL SOFTWARE

much faster than an audio cassette, and can automatically find the
location of a stored piece of information.,

Even so, cassette tapes have several important drawbacks. Before
you can use them, you have to load the program into the computer’s
memory. This procedure can take over a minute for a complex pro-
gram. Cassettes are also less durable than cartridges, and can be
made unreadable by magnetic fields or mechanical wear.

Coleco has recently announced a disk drive to provide a more con-
venient form of data storage. This device reads magnetically coded
information from 5'/s-inch plates called diskettes. You still have to load
diskette programs into the computer before you use them, but the
procedure is faster and more reliable than with cassettes. Coleco and
other software manufacturers plan to sell their cassette programs in
diskette form as well, once the disk drives become available. Read
Chapter 4 for more information.

Coleco has announced an expansion for the Adam that will let you
use programs written for the CP/M operating system. An operating
system is the computer’s underlying housekeeper that keeps track of
what the computer is doing. CP/M is one of the most common
operating systems for more expensive computers, and many highly
respected programs will run with it. While the Adam might not handle
all of these perfectly, the CP/M expansion will certainly broaden your
choices of software. To use a CP/M program, you will need to have
a disk drive.

You can buy programs for your Adam at most places that sell com-
puters or video-game machines. Department and discount stores usu-
ally carry some programs, especially the more popular games. Many
record and television stores now also carry software for home com-
puters. In large cities, you can usually find stores that specialize in
computer software. These are your best bet for finding the less
popular titles.

You may need to be a little patient as you shop for programs. The
Adam is quite a new machine, and software companies need time to
convert their programs. Most game programs appear in the fall, to
take advantage of the peak Christmas season.

Coleco has announced a variety of programs for the Adam, in
addition to the ColecoVision cartridges it already makes. These were
not yet available at the time this book was being written, and one
can only hope they will come out soon. Many, however, are popular

29

26

THE EASY GUIDE TO YOUR COLECO ADAM

programs already available for other machines, so a few generaliza-
tions are possible.

A number of independent software companies will also be selling pro-
grams that run on the Adam. Coleco has wisely encouraged this practice
in the belief that a wide selection of software will help to sell its machines.
These independent companies are called third-party manufacturers.

If you choose your programs off the shelf, you will learn an
unpleasant fact: mixed in with the truly excellent programs are many
poor ones. In the fast-moving computer business, some companies
can sell inferior products merely by wrapping them in attractive pack-
ages. Even Coleco has rushed some programs to market before they
were ready. Since you usually have no way to look at a program
before you buy it, you can easily make mistakes.

Computer magazines are your best resource for the moment. Per-
sonal Software is an excellent new magazine, devoted to news and
reviews of home computer products. Compute! is a general monthly
magazine that often reviews new programs offered for home com-
puters. Finally, there is the ADAM Family Computing magazine, to
which you were invited to subscribe when you bought your computer.

CAMES

Buck Rogers: Planet of Zoom, described earlier in this chapter, is
only one of the games you can play on your Adam. Coleco owes some
of its popularity to its large selection of video games, many of them
adaptations of famous titles from the video arcades. Game programs
usually cost between $25 and $40.

Of the arcade games that Coleco sells for the Adam, Donkey Kong
is the most famous. It is now available as a ColecoVision cartridge
that you can plug directly into the computer. Another version has
been announced in the form of a cassette tape that you will be able to
read into the Adam’s memory.

The object of the Donkey Kong game is to maneuver Mario, the
man at the bottom of the screen, so that he can climb to the top and
rescue his girlfriend. Donkey Kong, the gorilla at the top, tries to
knock Mario out by rolling barrels down the girders on the screen. To
stay alive, you must make Mario jump at exactly the right times.

Coleco has licenced a number of other games to sell for the Adam,
including Zaxxon, Congo Bongo, and Star Trek: Strategic Operations

COMMERCIAL SOFTWARE

Simulator. While it is too early to say how well Coleco’s versions of
these games will turn out, they are all good games in the arcade.

Stay away from Coleco’s adaptation of Dragon’s Lair, however.
That arcade game owed its appeal to the animation effects made pos-
sible by its innovative videodisc system. Coleco’s version is just a
standard video game, and not a very good one. Coleco has an-
nounced an expansion system that will allow true videodisc games. If
this system is marketable, Coleco plans to sell an improved version of
the Dragon’s Lair game.

If you're looking for adaptations of famous arcade games, you
might want to try an unlikely source: Atari. Because of the vast popu-
larity of its video game machines and computers, Atari has been able
to buy the exclusive rights to sell home computer versions of many of
the most famous video-arcade games. Until recently, Atari has jeal-
ously kept these titles for its own line of computers. Late in 1983,
however, Atari launched a new division called AtariSoft to sell games
for its competitors’ machines from its vast library.

At the moment, Atari has issued only three titles for the Coleco:
Centipede, Defender, and Galaxian. All are sold as cartridges that
will fit in either the Adam or the ColecoVision game machine.

You cannot, however, buy the most famous game owned by Atari:
Pac-Man. Even though AtariSoft adaptations of this best-selling game
are available for other computers, Atari has so far refused to sell it for
the Coleco. That is unfortunate, but there are many other games you
can play.

Of the independent companies that have announced games for the
Adam, Brgderbund Software is the most impressive. Of the Adam
games that Brgderbund is preparing, Lode Runner is one of my
favorites. In this game, you maneuver a man around a vertical maze,
trying to pick up treasures without being caught by the three guards
who are chasing you. Brgderbund has also announced an Adam ver-
sion of its popular game called Choplifter!, in which you fly a helicop-
ter behind enemy lines trying to rescue 64 hostages.

You should remember that you can buy more than just video
games. Chess is one of the most interesting games you can play
against the computer. Some computer chess programs can play a very
respectable game.

Many people enjoy adventure games. Unlike a video game, an adven-
ture usually does not involve fast shooting or quick action. Instead, it

27

28

THE EASY GUIDE TO YOUR COLECO ADAM

places you in an imaginary situation, and asks you to find a treasure or
solve a problem. By far the best of these is the Zork trilogy, by Info-
com, in which you must explore an amusing underground empire.

You play Zork by typing short commands, such as “climb the
stairs”’ or ‘‘look under the table.” If the computer can understand
you, it will do as you direct and then describe the results. You must
often be very resourceful to find your way around an obstacle in the
imaginary universe.

The joysticks that come with your computer will be good enough
for most games. If you are a serious game player, you might want to
invest in a fancier joystick, for greater comfort and better control.
Coleco sells a set of Super Action Controllers, which are shaped so that
you can hold them easily in one hand. For certain games, you might
also consider an arcade-style trackball, which lets you control your
players by rolling a ball in the direction you want to move. Coleco’s
trackball is sold under the name Roller Controller.

SERIOUS PROGRAMS

Coleco and other companies sell many useful programs that can help
you in serious work as well. Education, home finance, and record keep-
ing are only a few of the uses to which you can put your computer.

Many people buy educational programs for their children. A com-
puter program can give a child individual attention and colorful,
animated illustrations of concepts. It can check his work each step
of the way, correcting mistakes as he makes them. Some people feel
that a child who becomes familar with a computer will be more com-
fortable with a machine that can be expected to play a large part in
his future.

Of the educational programs being developed for the Adam, my
favorites are those made by Spinnaker Software. That company's
Facemaker, designed for preschoolers, is one of the most entertaining
programs available, yet it is effective in teaching basic skills of mem-
ory, recognition, and creativity. With this program, your child can
create a face on the screen by choosing from a selection of hairstyles,
eyebrows, noses, and mouths. He can also play a memory game that
challenges him to recall a lengthening series of facial expressions.
Spinnaker sells several other fine educational programs.

COMMERCIAL SOFTWARE

If you want to introduce your children to computer programming,
you might consider Coleco’s SmartLogo. This is a simplified pro-
gramming language that lets a child explore the computer by creating
graphic designs on the screen. It is sold on cassette tape or diskette.

Complex financial calculations haunt many homeowners. A num-
ber of computer programs are available that can simplify such tasks as
calculating loan payments, making a budget, or keeping household
records. You may be amazed at how easily a computer program can
help you solve your financial problems.

One of the most useful financial programs is the electronic spreadsheet.
This program gives you a large free-form table, with many rows and
columns. You type numbers and labels into the cells of this table in
any way you wish. You can then use the resources of your computer
to add figures or perform complex calculations. This program is use-
ful for anyone who needs to keep track of charts of numbers. Coleco
has announced two different spreadsheet programs for the Adam: its
own SmartSheet, and a licensed version of the well-known SuperCalc
2 program. To use SuperCalc, you must have the CP/M operating
system expansion.

Many other programs are being developed that will let you do
other things with your Adam. Music programs, such as Electronic
Arts’ Music Construction Set, will let you play melodies through your
computer’s sound system. Painting programs will let you draw color-
ful pictures on the screen. Keep your eyes open: you will find many
programs that will interest you.

HOW TO USE SOFTWARE

There’s no real trick to using most preprogrammed software. You
Just start the computer, give some simple commands, and let the pro-
gram run. When the program needs some information from you, it
will usually ask you for it with a simple message on the screen. The
best programs are organized so that they actually help you organize
your thinking, and give you help when you need it.

With a cartridge, you just plug the program into the computer and
turn it on. The cartridge plugs in to the top of the computer, in the
large hole that is covered by a gray plastic door. Make sure you turn
the computer off before you insert or remove the cartridge: you can
damage the program if you leave the power on. To start the game,

29

30

THE EASY GUIDE TO YOUR COLECO ADAM

simply pull the RESET CARTRIDGE switch to the right of the
cartridge slot.

With cassettes or diskettes, you must load the program into the
computer’s memory before you can use it. With most cassette pro-
grams, you simply turn on the computer, place the cassette in the tape
drive, and pull the RESET COMPUTER switch, at the left of the
cartridge slot. The computer will then automatically load the pro-
gram. The procedure is similar for a diskette. Most software packages
include detailed instructions on how to load and use the program. For
further information about cassettes and diskettes, read Chapter 4.

Once you have the program loaded, the going is easy. The better
programs give you full directions right on the screen. You can usually
read the instruction manual for further explanation.

A LOOK AHEAD

This chapter has shown you how to use programs written and sold
by other people. In it, you have seen some of the things you can do
with your Adam with no experience whatsoever. By using prepro-
grammed software, you can learn about your machine and start it
working for you immediately.

This discussion has ignored one important program: the word pro-
cessor that comes built into your Adam. This is probably as useful as
any program you can buy for your Adam, and very easy to learn.
Since it forms such a central part of the Adam system, the word pro-
cessor has been given its own section in this book.

If you want to explore your computer more completely, you may
want to learn to write your own programs. Section Three of this book
concerns the Adam’s BASIC programming language. Programming
will put you in direct control of your machine, so that you don’t need
to restrict yourself to someone else’s routines.

Whether you choose to explore the word processor or the BASIC
programming language, you will be taking many more steps with
your computer. If you work slowly through all the examples in this
book, you will acquire a good, firm knowledge of your Adam.

SECTION

THE WORD
PROCESSOR

Chapter

Easy
Word Processing

In Section One, you learned how to set up your Adam and how to
buy programs that will start it working for you. If you have played
Buck Rogers: Planet of Zoom or any of the other Adam games, you
have already gotten a start.

This chapter is devoted to the program that is built into your
Adam: the SmartWriter word processor. With this program, you can
use your computer as an intelligent typewriter to type error-free let-
ters and reports.

Because of space limitations, this chapter can offer only a brief
introduction to word processing. If you want more detailed informa-
tion, you might want to read Ward Processing with Your Coleco Adam, by
Carole Alden (SYBEX, 1984). Her excellent introduction to Adam
word processing is a companion volume to this guide.

WHAT IS A WORD PROCESSOR? =

Word processing is one of the most useful tasks you can perform
with a home computer, and one of the most interesting. If you often
write letters or type documents, a word processor could save you lots
of time. You can revise a text without retyping it, or send personal-
ized form letters that all contain the same text but have different
names and addresses at the opening.

What is a word processor? It is like an electric typewriter, except
that you first store your text electronically in the computer’s memory,
instead of typing it directly on paper. You can then review your text
on the television screen. As you look it over, you can insert, delete, or

34

THE EASY GUIDE TO YOUR COLECO ADAM

rearrange words—even change whole paragraphs. Once you are
satisfied with your text, you type a command that asks the printer to
type the entire text on paper. If you later want to change a text that
you have stored, you can call it back, revise it on the screen, and
print it again. You should never have to retype anything.

A true word processor, such as the one in your Adam, has a feature
called word wrap. When you reach the end of a line, the computer auto-
matically pulls your next word down to the next line and keeps on
going, without waiting for you to press the RETURN key. You can
just keep typing as if you were writing one long line. The only time
you need to use the RETURN key is when you want a new
paragraph. Since you don't need to stop at the end of each line, you
can type more quickly.

The real advantage of word wrap is that it lets you edit your text.
Since the line breaks are not fixed, you can insert or delete words in
the middle of a paragraph. When you do, the computer will simply
rearrange the other words to fit between your left and right margins.
If you realize you have forgotten a sentence, you can go back and
insert it.

You can use a word processor for anything you would normally do
on a typewriter. Letters, school reports, or even notes to yourself—all
are easy with a word processor. The Adam’s printer produces a text
that looks like a typewritten page, so there’s no reason anyone needs
to know you typed it on your computer.

A word processor is especially useful for repetitive tasks like form
letters. Once you've printed your text, it remains in the computer’s
memory. If you want to change a few words or add a different name,
you just make your correction and print the revised text. You could
print a whole stack of form letters in this way.

Even if you don’t expect to use your Adam for word processing very
much, you will learn a lot by playing with the program. Word process-
ing is one of the easiest ways to learn about a computer, and since it
comes with your Adam, you might as well take advantage of it.

ADAM'’S ELECTRONIC TYPEWRITER

When you first turn on your Adam, your screen will show the
words ADAM’S ELECTRONIC TYPEWRITER, as in Figure 1.4.
This screen, is designed to resemble a sheet of paper in a typewriter.

EASY WORD PROCESSING

For example, your letters will appear in the black bar across the bot-
tom, which represents the typewriter’s rubber roller, or platen.

Coleco includes this electronic typewriter feature to help you see the
resemblance between a word processor and a regular typewriter.
While you will usually want to work on the full word processor, you
can start with a few experiments on this simulated typewriter.

Put some paper in the printer, then type some letters on the key-
board. The letters appear immediately on the screen, on the black
roller at the bottom. Then, about a half second after you press each
key, the printer will type the letter on the paper, just as if it were a type-
writer. The half-second delay comes from the time it takes your com-
puter to process the letter and send the appropriate signal to the printer.

Type as much as you want, just as you would on an electric type-
writer. Your Adam can accept letters as fast as you can type. If you
type quickly, the printer may lag a few letters behind, but the letters
will not be lost. The computer stores them and sends them to the
printer as quickly as it can print them. When you stop typing, the
printer will catch up and print the rest of the letters as you typed them.

Figure 3.1 shows the Adam’s keyboard. It looks very much like a
standard typewriter keyboard, but with some special keys added. The
letters are all in the same places, and only a few symbols have been
moved. Around the edges, there are a number of special keys that
help with certain word processing functions.

The most important of these special keys is the BACKSPACE,
which lets you go back and change one of the letters on the screen.

=

L v v v - J
T CECEELEE LT EL
CEEFTFTTEFIEELET

‘EEFLIFEErErERELE R
R ITITIITREE =

Y Y e

Figure 3.1: The Adam keyboard.

35

36

THE EASY GUIDE TO YOUR COLECO ADAM

Since the letter has already been printed on the page, you cannot cor-
rect it on paper; instead, the new letter will be typed on top of the old.
(When you use the full word processor, you will be able to correct
errors on the screen before they reach the printer.)

To type a capital letter, hold down one of the SHIFT keys while
you press the letter. If you want all your letters to be capitalized, you
can press the LOCK key at the bottom-left corner of the keyboard.
This key works just like the shift lock on a typewriter, capitalizing a
series of letters. To shift back into lowercase, press the LOCK key
again. The SHIFT key does not release the capital LOCK as it would
on a regular typewriter.

Aulo-repeat is another useful feature. If you hold down any key for more
than a second, it will repeat. You could, if you wanted, type a string of
Zs across the screen by merely holding down the Z key. The repeating
will stop when you release the key. The auto-repeat feature is particularly
useful with the space bar, for moving to the middle of a line.

At the right of the line you are typing, you will see a black underline
symbol, called the cursor. Whenever the computer is ready to accept let-
ters from the keyboard, it uses the cursor to mark the spot where your
next letter will be displayed. As you type, the cursor moves to the right,
in front of the letters that are appearing.

You will also notice that the Adam cannot fit as many letters on
each line of the screen as the printer can on the paper. When you
reach the end of the first line on the screen, the computer will con-
tinue onto the second line, but the printer will still be on the first line.
Although the lines are not displayed in their full width on the screen,
they are still stored that way, internally.

The black ruler that runs across the top of the screen shows you
your postion relative to the margins on the printer. The red bars near
the left and right ends of the black bar represent the margins, beyond
which you cannot type on the paper. Somewhere in between, a white
vertical line indicates which column the printer is actually typing in.
If you have just begun the second line on the screen, the white bar
will be near the middle of the ruler, which means that the printer is
roughly halfway across the page.

If you have your television’s sound turned up, you will hear a bell
as your letters reach the right margin on the printer. Like a type-
writer, the Adam warns you when it is about to reach the end of the
line. Press RETURN to start a new line, just as you would hit the

EASY WORD PROCESSING

carriage return on a typewriter. (On the Adam’s full word proces-
sor, the computer’s word wrap will be taking care of the line ends
automatically.)

Don’t press RETURN just yet—type a few more letters until the
Adam will not accept any more. You have now reached the right mar-
gin of the page, and the computer has stopped you to keep you from
typing off the edge of the paper.

Suppose you want to fit a few more letters on this line. On a type-
writer, you would press the MARGIN RELEASE key. The Adam
does not have a special key for the margin release; however, it has a
key that serves the same purpose.

Look at the two blue boxes at the bottom-right corner of the screen.
These are labels that correspond to the row of black keys marked
with the Roman numerals I through VI on the top row of the type-
writer keyboard. These SmartKeys are general function keys that
perform various special tasks. The SmartKeys’ meanings change
depending on what you happen to be doing at the time. Look at the
blue boxes on the screen to see what each SmartKey means at the
given moment.

Right now, the screen shows two boxes, numbered V and VI. This
means that SmartKeys I through IV have no function in this situa-
tion, but that you can use the other two keys. Don’t worry about
SmartKey V just yet: it changes the margin settings of the paper.
Press the VI key to release the margins.

The effect is the same as if you pressed the MARGIN RELEASE
on a typewriter. You can now continue and type a few more letters on
the line. Like a typewriter, however, the Adam’s printer will soon
reach the right edge of the paper, and the computer will not accept
any more letters, even if you again press the VI key. You must then
drop down to the next line to continue.

Press the RETURN key. The printer will advance the paper one line
and return to the left margin to begin the new line. On the screen, a
black triangle representing the RETURN will appear at the end of the
line, and your text will shift upward so that the black roller is once
again empty. You can now type another line into the computer, just as
you typed the first. Press RETURN at the end of each line.

That’s all there is to Adam’s Electronic Typewriter. Play around
with it for a while. Everything will work the way you’d expect an elec-
tric typewriter to work. Don’t worry if you can’t figure out the

37

38

THE EASY GUIDE TO YOUR COLECO ADAM

SmartKey options just yet. They will become clear as you learn about
the word processor.

THE WA IR PR i S I s =

So far, you have been using the Adam just like a typewriter. This is a
good way to become familar with it, but you’ll quickly want to move
on to the full features of the word processor. Once you get comfortable
with the word processor, you will want to use it for everything.

Press the ESCAPE/WP key in the upper-left corner of your
Adam’s keyboard. The computer will switch from the simulated type-
writer mode to the full word processor. Once you have switched, you
cannot return to the typewriter without turning the computer off.

When you press the ESCAPE/WP key, the screen will change
slightly, so that it will have the same form as Figure 3.2. Anything
you may have typed in the typewriter mode will remain on the screen
as the beginning of your word processor text. The blue boxes at the
bottom of the screen will have changed to show the new SmartKey
options available in the Adam word processor.

There is another change in the screen as well. Along the left side, a
vertical ruler appears with the number 11 at the top. Just as the hori-
zontal ruler line at the top of the screen lets you see your position
between the left and right margins, the white marker on this vertical
line shows you how far you have moved down the page. The number
11 indicates that the computer is expecting you to use standard letter-
sized paper, 11 inches long.

Now type some characters. This time, the printer remains quiet
and doesn’t type anything. The letters appear only on the television
screen and not on the paper. Only later will you see the letters on
paper, when you have the computer print the text all at once.

This is the main difference between a typewriter and a word pro-
cessor. On a typewriter, your letters are printed as you type them. If
you make a mistake or want to change something you have typed,
you must correct the page with correction fluid. With a word pro-
cessor, the mistake does not go directly to the paper. Instead, it is held
in the computer’s memory, where you can easily make corrections.
Since nothing is printed until you are satisfied with the entire docu-
ment, the correction leaves no trace.

EASY WORD PROCESSING

A } 4

VI
SUPER/
P

2.1 I
MARGIN/S SCREEM

Figure 3.2: The Adam word processor.

Type out past the end of the line on the screen. The computer will
break the line and start a new one when you reach the right edge of
the screen. Keep typing until you reach the end of the second line.
Notice that the word processor does not sound a bell when you reach
the right margin. Instead, it automatically moves the line up off the
black roller on the screen and continues the text on the next line
down. The computer does not break a word in half, but starts the
new line with a full word, so that you can read it clearly.

You can type as many words as you want. Try typing a full
paragraph—use a passage from this book if you want. The computer
will arrange the words neatly into clear lines on the screen. You never
have to stop typing at the end of a line to hit the RETURN key.

On the word processor, the RETURN key is used only at the end
of an entire paragraph. Within each paragraph, you let the word pro-
cessor decide where to end each line: it will arrange the paragraph so
that each line is roughly the same length. When you finish a para-
graph, however, you will want the next one to start on a new line, so
you hit the RETURN key to force the computer to end the line. A

39

THE EASY GUIDE TO YOUR COLECO ADAM

small black triangle will appear to remind you that you pressed
RETURN at that point. If you later add or delete text, the word pro-
cessor may rearrange the lines, but the paragraph will always end at
the black triangle.

If you make a mistake while you are typing, you can correct it with
the BACKSPACE key, located at the upper-right corner of the key-
board. When you press this key, the computer backs up one space
and deletes the letter typed there. You can then type the correct letter
and continue on.

The BACKSPACE key works the same way as in the electronic
typewriter mode, but with one essential difference. In the typewriter
mode, the BACKSPACE could erase a letter on the screen but not
one typed on the page. When you typed the new letter, the printer
had to type it on top of the mistake. With the word processor, how-
ever, the BACKSPACE erases the error on the screen, and the new
letter completely replaces the old one in the computer’s memory. No
trace remains of your mistake, so when you finally send your text to
the printer, it will be typed correctly.

The BACKSPACE is the simplest of the many keys you can use to
make changes in your text. In the next few pages, you will learn
about other word processor functions that let you make more substan-
tial changes in your text. The basic idea, however, remains the same:
you correct your text on the screen before you have the printer type
it, so that your text is perfect by the time the words appear on paper.

CONTROLLING THE CURSOR

You have seen that the letters you type are displayed on your televi-
sion’s screen. The letters appear from left to right, and the cursor, a
flashing underline symbol, slides to the right in front of them, showing
your position on the screen. However, by pressing certain special keys,
you can move the cursor anywhere you choose in your text. Moving
the cursor lets you correct letters that you have already typed.

The cursor always shows where the next letter you type will be dis-
played. So far, the cursor has always appeared at the end of the last
word you typed. To move the cursor, you need to use the arrow keys,
located just to the right of the keyboard. The left and right arrows
move the cursor to the left or right along the line you are typing. The

EASY WORD PROCESSING

up and down arrows let you move to other lines in the text, above
and below the line you are typing.

Because of the way the Adam displays text on the screen, you must
cope with one confusing feature. The cursor will always appear some-
where within the two lines displayed in the black roller region on the
screen. You can use the up and down arrows to move the cursor to
lines that fall outside this roller; however, instead of moving the cur-
sor, the Adam moves the entire text up and down, as if it were mov-
ing a piece of paper up and down through the roller of a typewriter.
So, when you want to move the cursor up to the line above, the cur-
sor doesn’t move, but the line rolls down to meet it.

In spite of this slight confusion, I will continue to speak of “moving
the cursor.” It is useful to think in these terms, since the cursor indi-
cates where the next typed character will fall. The cursor will actually
move in some cases, while in others it will wait for the text to move to
it. In all cases, however, you are trying to position the cursor at some
point in the text, and it’s easier to think of moving the cursor, rather
than the text.

Type some words. Now, press the left arrow key to move the cur-
sor to the left. If you hold down the key, the cursor will move rapidly.
You can move as far as you want along the line on the black roller. If
you are on the second line on the roller, the left arrow will move the
cursor back to the beginning of the second row and then jump to the
end of the first line. It will finally stop when it reaches the first letter
on the roller— the left margin of the paper as it will eventually be
printed. You can use the right arrow in a similar way to move the
cursor back to the right.

You may have noticed a similarity between the left arrow and the
BACKSPACE key. Both keys move the cursor back to the left across
letters you have already typed. But the BACKSPACE key deletes the
letters it passes over, while the arrow keys do not. They simply move
the cursor past the letters to position it. With the arrow keys, the text
remains unchanged; only the cursor’s position changes. This point
will soon become important, when we want to change letters in the
middle of a line.

If you have typed several lines, you are probably on the last line of
the black roller, but you can see several previous lines on the light-
blue portion of the screen. If you now want to make some changes in
those lines, use the up arrows to move those lines.

41

42

THE EASY GUIDE TO YOUR COLECO ADAM

Press the up arrow key. The text will be redisplayed on the screen
so that the cursor is located one line up from its previous postion. The
computer has moved all the lines down one. The line that used to be
just above the black roller is now shown on the roller’s first line, and
the cursor is flashing somewhere beneath it. By using the up arrow,
you have moved the cursor back to the line above the one you were
typing. To return to the line you were typing, press the down arrow.
The screen display will shift, and the cursor will be back on the line
you were typing.

You may think it strange that the up arrow moves the text down
and the down arrow moves it up on the screen. Remember that some-
times the Adam moves the text to the cursor, rather than moving the
cursor to the text. The arrow keys indicate the direction of the cur-
sor’s movements. When you press the up arrow, you are asking the
computer to move the cursor up to the line just above. Rather than
move the cursor up, the Adam moves the text down to meet the cur-
sor. The effect is the same, however: the cursor is now on the line
above the line where it was before.

The HOME key, located between the four arrow keys, is also use-
ful for moving the cursor. When you press HOME, the computer will
place the cursor at the beginning of the first line at the top of the
screen. If you haven’t typed enough lines to fill the screen, the com-
puter will move the cursor to the beginning of the first line of your
text. Although you could reach this same line by pressing the up
arrow key several times, it is quicker to use the HOME key, espe-
cially when you want to move back quickly through a long document.

The Adam word processing manual claims that you can use the
HOME key in combination with the other arrow keys to move the
cursor quickly. For example, the manual says that you can move
down through your text a full screen at a time by pressing the HOME
key and the down arrow at the same time. Unfortunately, this feature
works erratically on most Adams. Try it. If this feature works reliably
on your machine, you may find it useful. Don’t get frustrated, how-
ever, if you occasionally get odd results.

CHANGING LETTERS

Now that you can move the cursor, you can return to any letter in
your text and change it. When you move the cursor, the computer

EASY WORD PROCESSING

will place the next letter you type in at this new place, rather than at
the end of the line you were on.

If you move the cursor and then continue typing, the new letters
will replace the old ones on the screen. The cursor will again move
from left to right along the lines, so that you will be typing new words
over the old, starting from wherever you’ve located the cursor.

Let’s correct a mistake. First, use the down arrow key to return to
the last line you typed. Press the down arrow once more to start a
new line, and type the following words on this clean line:

This line contains a mestake

The word ‘mistake’ is misspelled here. To correct it, you could press
the BACKSPACE key six times to erase the end of the word and then
retype it correctly. It is easier, however, to use the arrow keys, so that
you have to retype only one letter. Press the left arrow key six times so
that the cursor is under the e. Then type an «. The { replaces the ¢ and
corrects the misspelled word. You do not need to retype the rest of the
word, since it is still stored in the computer’s memory. To return to
the end of the word ‘mistake,’ press and hold the right arrow key. Do
not—as you would on a regular typewriter—use the space bar; it will
replace the letters on the screen with blank spaces.

You have already used the BACKSPACE key to erase mistakes
right after you typed them. You can also use this key to remove extra
letters from the middle of a line without leaving a space. To see how
this works, press RETURN to get to a new line, then type another
misspelled line:

This line contains a misstake

Here you must remove the extra s from the word. Use the left arrow
key to move the cursor under the second s in ‘misstake’. Then press
the BACKSPACE key. The extra s will disappear and the ‘take’ will
move over to fill in the space. Use the right arrow key to pass over the
corrected word.

WORD PROCESSING COMMANDS

With just the arrow keys and the BACKSPACE, you can move
about your text, type over letters, and delete extra characters. The
Adam’s word processor lets you do much more, however. It lets you

43

44

THE EASY GUIDE TO YOUR COLECO ADAM

nsert text, delete whole blocks of text, and move and copy blocks to
another point in the document. These useful functions are the real
strength of a word processor.

The Adam has a group of six special keys for these functions,
located just to the right of the BACKSPACE. Three of the six have
very similar functions, so I will treat them now: INSERT, DELETE,
and MOVE/COPY. The other three will come later.

The simplest is the INSERT command, which lets you add any
number of words and letters anywhere in your text. The inserted let-
ters are placed between letters you have already typed.

To see how the INSERT command works, let’s try another ex-
ample. Use the down arrow to move to a blank line at the bottom of
your text. Then type

This line contains a mstake

Here, the 7 is missing from the word ‘mistake’. If you move the cur-
sor to the left and type the / at the proper place, it will appear on the
screen but will replace a letter that you want. You would have to con-
tinue typing over the word until you reached the end of the line.

Instead, you can use the INSERT key. Move the cursor so that it is
beneath the s in ‘mstake’—always position the cursor to the right of
the space where you want to add your letters. Then press the
INSERT key. The screen will change and the letters to the right of
the cursor will disappear, but they haven’t been erased. You will get
them back in a moment.

Now look at the message in the yellow box at the bottom of the
screen:

INSERT
TYPE TEXT

This message indicates that you can now type the letter ¢ without hav-
ing it replace the s in the word.

When you pressed the INSERT key, the blue boxes at the bottom of
the screen also changed to show new meanings for SmartKeys I
through VI. In this situation, you won’'t need to worry about
SmartKeys I through V: the first three have no function, and IV and V
perform specialized tasks. SmartKey VI (DONE), however, is essential
for telling the computer that you've completed your insertion (the letter
t). The rest of your text will then be restored, and the regular

EASY WORD PROCESSING

SmartKey labels will return. Since you inserted the i before the s,
rather than typing over it, the word will now be spelled correctly:
‘mistake’.

You can insert text of any length. If your insertion runs past the end
of a line, the word processor will start a new line just as it always does.
When you press DONE to restore your full text, the computer will
rearrange the words that follow so that they fit into a neat paragraph.

The ability to insert text is one of the great strengths of a word pro-
cessor. Since you can always go back and insert a word or a sentence,
you don’t have to retype your text when you forget something. Some
people intentionally leave whole sections out of their documents, then
go back later to fill in the gaps.

This INSERT command is typical of the Adam’s word processing
functions. You first press the command key to show what you want to
do. You then look at the SmartKey labels at the bottom of the screen
for further directions and options. With INSERT, the computer also
displays a yellow box that reminds you what to do next. In some
cases, there will be no yellow box, but the SmartKey options will tell
you what is needed.

At times you will find yourself in the middle of a function that you
don’t want to complete. You might, for example, have pressed the
INSERT key or one of the SmartKeys by mistake. You can almost
always cancel a command by pressing the ESCAPE/WP key. This
will restore the text to the way it was before you hit the command key,
and return you to the standard SmartKey options.

The opposite of INSERT is the DELETE command, which erases
a whole section of your text. Just as the BACKSPACE key allows you
to delete a few isolated letters, the DELETE key lets you erase a
much larger chunk, such as a full sentence, a paragraph, or even a
group of paragraphs.

To use DELETE, you also need to use the HI-LITE SmartKeys. If
you press SmartKey IV (HI-LITE), a red underline will appear
under the letters on the screen as you run the cursor past them. This
underline will not be printed in the final text—it is merely the way
you mark the block of letters that you want to delete. To stop painting
the underline, press IV again (it now means HI-LITE OFF). If you
go too far and highlight letters that you don’t want to delete, press V
(HI-LITE ERASE), then run the cursor back across those letters.
The red underlines will disappear as you move.

45

46

THE EASY GUIDE TO YOUR COLECO ADAM

You can highlight your text either before or after you press the
DELETE key. I'd suggest you do it after. First press the DELETE
key. The computer will display a yellow box with the instructions

HIGHLIGHT TO DELETE

Move the cursor to the beginning of the block and press SmartKey
IV (HI-LITE). Then use the right arrow key to run the cursor past
the characters you want to delete. If you want to delete more than one
line, press the down arrow key to move to the second line, and use
the arrow keys again to run the cursor all the way across the second
line. There is no way to highlight an entire line in one step. You must
run the cursor all the way across it.

When you reach the end of the block you want to delete, press IV
(HI-LITE OFF). Check the highlighting to make sure it's correct,
then press SmartKey VI—FINAL DELETE. The block of text will
disappear and the text will be rearranged to fit the margins.

What if you decide you want the block back? The Adam’s word
processing manual claims that you can restore the text by immedi-
ately pressing the special UNDO key. You can—sometimes. In many
cases, though, this key does not work correctly: the deleted text will
return, but a word or two may be missing, or some letters may be
garbled. This error results from a defect in the Adam’s design, and
you can’t change that. So, don’t rely on the UNDO key to restore
deleted text; always make sure you want to delete the block before
you press SmartKey VI for FINAL DELETE.

You can also MOVE or COPY a block of text. The MOVE option
allows you to mark a section of your text and move it to another
place. You could, for example, transpose two sentences or move a line
further down the page. With COPY, the marked block will appear in
both the new location and in its original position.

To MOVE or COPY text, press the special function key MOVE/
COPY. Then press SmartKey V for MOVE or VI for COPY.
From this point on, the procedures for MOVE and COPY are almost
identical.

You must now highlight the text, but you need to mark only the
first and last letter in the block. Move the cursor to the beginning of
the block that you want to move or copy and press SmartKey IV
(HI-LITE FIRST) to underline the character. Then move the
cursor down to the end of the block and press SmartKey V

EASY WORD PROCESSING

(HI-LITE LAST). Note that you do not need to run the cursor past
every letter in the block, as you did with DELETE. You merely need
to move to the last letter and highlight it; use the down arrow
key to move directly to the end of a long block.

After you have highlighted the first and last characters in the block,
the computer will ask you to place the cursor at the spot where you
want to move or copy the text. With MOVE, simply press SmartKey
VI (DONE) once you have positioned the cursor. The computer will
rearrange the text so that the block appears in its new place.

With COPY, the procedure is slightly different, because the Adam
lets you copy a block several times. Position the cursor to show the
location of the first copy, then press SmartKey V. The marked text
will now appear twice in your document: in its original location and
in the new one. If you want to make another copy, move the cursor to
another point and press V again. When you’re finished making cop-
ies, press SmartKey VI (DONE) to return to the standard word proc-
essing options.

The block commands DELETE, MOVE, and COPY are very use-
ful, but they have a few limitations. You cannot use any of the three
to change a block longer than a single screen. Sometimes also, the
MOVE and COPY commands don’t work correctly when you try to
move a word or group of letters to another place in the same line: you
must MOVE and COPY text from one line to another. Make do with
these restrictions.

LIS THE FRINTER —————————— —

If you have been typing the examples in this chapter, you now have
a fair amount of text on the screen, but none of it has appeared on
paper: the word processor gains its power by delaying the actual
printing until you have completed revising your text. Let’s print out
what you've got.

Put a blank piece of paper in the printer roller, or use the same
sheet you used with the electronic-typewriter option.

Now press the PRINT key, located between INSERT and
DELETE in the group of command keys. The SmartKey labels will
give you a variety of options. You can use SmartKey I'V if you want
to print only what’s on the screen, or use SmartKey III if you want

47

48

THE EASY GUIDE TO YOUR COLECO ADAM

just the highlighted blocks. In most cases, however, you’ll want to
press SmartKey V to print the entire document: PRINT WK-
SPACE. Then press V again to start the printer.

The printer will type your entire document, line by line. Since you
haven’t asked for a particular format, the text is typed single spaced,
with one-inch margins on either side. If your text is a page or less, the
printer will type the entire text on the one sheet, then stop. You can
then pull the paper out of the printer roller.

If your text is longer than one page, the printer will stop when it
reaches the bottom. It does this so that you can pull out the paper and
put in another sheet. Press SmartKey V (PRINT) once you have this
second sheet in position. The printer will then continue from the point
where the first page ends.

If you often print documents longer than one page, you might want
to buy a tractor feed mechanism for your printer. Coleco sells one that
snaps directly into the slots on the top of the Adam’s printer. The
tractor feed allows you to run a stack of continuous fan-fold paper
through the printer. The feed mechanism guides the paper by pulling
on sprocket holes located on strips along each side of the page. When
the printing is finished, you can tear off the perforated strips and sep-
arate the sheets of paper. With a tractor feed, you won’t have to posi-
tion each sheet individually in the printer.

You can control many aspects of the document’s final appearance:
the left and right margins, the blank space at the top or bottom of the
page, and the vertical line spacing. You can also change the size of the
paper from 82 x 11-inch letter-size to the longer legal-size paper.

To make such changes, press SmartKey I—-MARGIN/TAB/ETC.
The SmartKey labels in the blue boxes will change, giving you a
variety of options, including SIZE OF PAPER (I), HORIZ. and
VERT. MARGIN (1I and III), LINE SPACING (V), and END OF
PAGE (VI). Experiment with some of these. Most options are
self-explanatory.

On the printer itself, you can change the style of the type by replac-
ing the daisy wheel, the plastic disk that spins to strike the letters. Col-
eco sells several different daisy wheels for its printer.

Printing the text does not erase it from the computer’s memory. It
remains stored and displayed just as it was before you printed it. You
can therefore go back and make changes if you don't like the printed
product, and you can print the text as many times as you wish.

EASY WORD PROCESSING

As you revise your document, you should always be thinking about
the final printed text. The Adam word processor helps you visualize
this with a feature called on-screen formatting: as you work, the program
adjusts the display to reflect your changes. If you insert or delete a
word, the display will show you what the text will look like when you
print it out.

You have seen one major difference between the screen and the final
printing. On the screen, the lines are limited to 36 characters. On the
printer, the lines are longer—perhaps as many as 80 characters if you
fill the full width of a page. The Adam therefore splits every line
roughly in half on the screen, so that you can see the entire text.

The Adam also has another mode that lets you see the lines exactly
as they are stored. This mode is called the moving-window format,
because it lets you look at only part of each line through a window into
the full-width text. Using the arrow keys, you can move the window
right or left to see other sections of each line. The Adam limits you to
part of each line, because it cannot show more than 36 characters on
each screen line.

To get into the moving-window mode, press SmartKey II for
SCREEN OPTIONS. Then press VI for MOVING WINDOW. Use
the same procedure to switch back to the normal screen display.

The moving-window format is designed primarily to let you previaw
the entire text, so that you can catch gross formatting errors before
you print. You can also use the moving-window display when you are
designing a table with many columns. On the standard display, the
columns will not line up properly; in the moving-window mode, all
the columns are displayed exactly as they will appear on the page.
The moving-window display also lets you DELETE, MOVE, and
COPY larger screens of text.

ADVANCED WORD PROCESSING ———

You have now used most of the commands you'll need to compose
and print your text. The Adam also has many other features that let
you do more specialized tasks.

One important command is CLEAR, which lets you erase all or
part of your document. You might want to use this command now to
clear your screen of all the examples you have typed in this chapter.
Press the CLEAR key, located just above the DELETE. The Adam

£9

50

THE EASY GUIDE TO YOUR COLECO ADAM

will give you two SmartKey choices: V for CLEAR SCREEN, and
VI for CLEAR WK-SPACE. If you want to clear the entire work-
space, press VI and the computer will ask:

CLEAR WORK SPACE: ARE YOU SURE?

Press VI (FINAL CLEAR) to finish the job.

The Coleco manual says that you can restore your document after
a CLEAR command by pressing the UNDO key. Not necessarily. As
noted earlier, the Adam’s UNDO key gives unpredictable results. If
your text is longer than a few paragraphs, UNDO will bring back
only part of your text. The rest will be lost or replaced by gibberish.
Don’t use UNDO.

SEARCH is another useful feature. You can ask the Adam to scan
through your entire document and look for every instance of a certain
word or phrase. First use the HOME and up arrow keys to move the
cursor to the beginning of the text you want to search. Then press
SmartKey III for SEARCH, and tell the computer what string of
characters to look for. The computer will then scan through the text
and stop each time it finds the string of letters. You can also ask it to
replace the string with another sequence of letters, in that one place or
throughout your document.

You can also use the SEARCH feature to move to the end of a long
document. The Adam has no command that takes you directly to the
end of your text. If you are typing a short letter, you can simply hold
the down arrow key and wait until you reach the end. With a long
document, however, that procedure could take a long time. To get to
the end quickly, tell the computer to SEARCH for a string of letters
that you know is not in the text; you can use a nonsense string like
‘gqxz.” The computer will scan all the way through and stop at the end
of the document.

Experiment with the various SmartKey commands. Most are clear
enough that you can figure them out without instructions. You will
discover that you can type subscripts and superscripts, (letters below and
above the line), change the colors on the screen, or turn off the sound
effects that imitate a typewriter’s key clicks.

For more information, you will want to do some additional read-
ing. I cannot recommend Coleco’s word processing manual. It is
unclear, poorly organized, and sometimes misleading. While it
describes all the features of the word processor, the manual does not

EASY WORD PROCESSING

explain the purpose of the program. It also describes several features
that do not work correctly. You may become frustrated if you rely on
the Coleco manual.

If you want a fuller description of the Adam word processing sys-
tem, look at Word Processing With Your Coleco Adam, by Carole Alden.
This excellent book is very readable and follows a clear, well-
organized outline.

There may come a time when you outgrow the Adam word pro-
cessor. Although the SmartKey labels are quite easy to use, the unit’s
overall functions are limiting if you frequently write long documents.
The most serious restrictions on the Adam'’s built-in word processor
are speed and size. The commands work fast enough if your text runs
only a page or two, but the program starts to slow down on longer
documents. Also, since it is hard to move directly to the beginning or
end of the document,it can be difficult to work with long documents.

Also, several features simply don’t work the way they’re supposed
to. In this chapter, you have already learned to avoid certain pitfalls
of the UNDO, DELETE, and MOVE/COPY commands. Other
commands work inconsistently, too, and you may become frustrated if
you are expecting reliable responses. Read the book by Alden to find
out more about these pitfalls and to learn ways to work around them.

At some point, you may want to buy a more sophisticated word
processing program than the Adam’s built-in system. As this book
was being written, no other word processors were available for the
Adam, but one was in preparation: OmniWriter, by HesWare. I have
seen that program on other computers and was quite impressed by its
flexibility. If the Adam version turns out well, it might be an appro-
priate alternative for owners who outgrow the built-in system. Other
word processing programs will probably become available too.

SUMMARY _

The Adam word processor lets you correct typing mistakes before
the ink hits the paper. Instead of typing directly on the page, you first
store your words in the computer’s memory, where you can easily
make changes.

The four arrow keys are essential to the word processor. They let
you move the cursor around the text, so that you can go back and

51

52

THE EASY GUIDE TO YOUR COLECO ADAM

make changes. Without any special commands, you can type over
parts of your text, or delete letters with the BACKSPACE key.

You can also edit your text in more complex ways. You can
INSERT letters in the middle of a line you have typed. You can
DELETE large blocks of text, or MOVE and COPY them from one
place to another.

Once you are satisfied with your text, you tell the Adam to PRINT
it. The printer will automatically type the entire document, stopping
only to let you change paper at the end of each page.

In this chapter, I have skipped over one important command:
STORE/GET. This key allows you to save a document on a cassette
tape, so that you can turn the computer off without losing your work.
To use this command, you must work with the Adam’s cassette drive,
which is the subject of the next chapter.

Chapter
The Cassette Drive

Your Adam has a cassette tape drive built into its front panel. In
Chapter 2, you have seen how to use the drive to load commercial
programs, such as the Buck Rogers: Planet of Zoom game. In this
chapter, you will learn how to use it for another important purpose:
permanent storage.

When you type a document into your computer’s memory, it
remains stored until you give a CLEAR command or turn off the
power. That is fine if you just want to type a letter, print it, and go on
to something else. Many people, however, like to store their writing
for future use. With the cassette drive, you can save a document, turn
the computer off, and load the text back in when you want to use it
again. In this way, you can keep a text on hand and revise it later on.

The cassette drive can be used for storage with either the word pro-
cessor or the BASIC programming language. Since this chapter is part
of the word processing section, the examples involve the word pro-
cessor. The same basic procedures, however, apply to storing BASIC
programs, as described on pages 109-14, at the end of Chapter 7.

No matter how you plan to use cassettes, you should read the next
few pages, which describe the tape drive and some precautions for
handling the cassettes. These precautions are very important and they
apply to all forms of cassette storage—not just to the word processor.

WHAT IS THE CASSETTE DRIVE?

From the outside, the Adam’s cassette drive looks just like a stereo
tape deck. It has a door you can open, two spindles for turning the
tape, and a magnetic head for reading the recording surface. It accepts

o

THE EASY GUIDE TO YOUR COLECO ADAM

tapes that are shaped exactly like those you might buy for a portable
cassette recorder.

Inside, however, the cassette drive is very different. It can read the
tapes at a much higher speed than a stereo recorder. It can automati-
cally advance or rewind a tape, and can find its place in the middle of
the tape. And while the drive looks like a regular cassette deck, it
requires special cassettes available only from Coleco.

To distinguish its cassettes from the tapes used with stereo equip-
ment and other computers, Coleco coined the name ‘digital data
pack.’ I find this term cumbersome and confusing, so I won’t use it in
this book. A cassette is a cassette, and that’s the name I'll use.

The Adam’s cassette system is, in many ways, revolutionary. Other
computers can use cassette tapes, too, but they read the tapes as a
regular tape deck would: slowly and from start to finish. This severely
limits their flexibility.

Designed specifically for computer data storage, the Adam’s cas-
settes are superior to standard tapes. They spin much faster, so the
computer can save or retrieve more information in a given time. The
Adam’s cassettes record more efficiently on their surface, so they can
hold more information than other tapes.

Flexibility is the greatest advantage of the Adam’s cassettes. With
a standard tape, the drive must start at the beginning and read
straight through to the end. The Adam’s cassette drive, by contrast,
can go immediately to any spot you choose and find the information
that you want to retrieve. You can save many different files on one
cassette and quickly find the one you are looking for. This flexibility
allows you to do many things that would be impractical on another
cassette drive.

The special cassettes are available only from Coleco. The tapes are
specially formatted with magnetic markings so that the drive can find its
place on the tape. Other kinds of cassettes will not work with the
Adam; in fact, they won’t even fit in the recorder.

TAKING CARE OF CASSETTES

Coleco’s revolutionary cassette system has its drawbacks, as well.
Because of the high speed at which the tapes spin, the unit is far more
temperamental than a stereo recorder. Even a minor flaw can make a

THE CASSETTE DRIVE

tape unreadable, and you may wind up losing expensive programs or
valuable data. X

Take care of your tapes! You must load a document stored on a cassette
every time you want to use it. If you damage a cassette, you may per-
manently destroy its contents. To avoid disaster, you must follow a
few basic rules.

Because the information on a cassette is recorded magnetically, the
tape can be erased by any strong magnet: the stored information
would be lost, and the tape may become unreadable, since the com-
puter will not be able to find its place on the tape.

There are many sources of magnetism in your house. One is prob-
ably sitting right next to your Adam: your television set. Even closer
is your Adam’s printer, which produces quite a strong magnetic field
while it is running. Your telephone produces magnetism when it
rings, and your stereo speakers have magnets in them.

Never set your tapes on top of any prece of equipment! It’s very tempting to
set a tape down on the nearest object. If that object happens to be
your Adam’s printer, your tape could be erased in a matter of sec-
onds. Set a shoebox aside for all your tapes, and store them there any
time you take them out of your machine.

Set up your system so that the cassette drive is at least two feet
away from your television and printer. Magnetic interference can dis-
turb the drive as it is reading or recording.

Remove your cassettes from the drive before you turn the computer on or off.
Whenever you flip the on-off switch, there is a power surge, which
can erase information from the tape. Although Coleco’s program
tapes were originally designed to load automatically when you turn
the power on, you should never try that. Always turn the computer
on first, then insert the tape and load the program with the RESET
COMPUTER switch.

Always wait until the drive stops before trying to EJECT a cassette.
The tape will be physically damaged if you try to remove it while it is
spinning. No matter what it is doing with the cassette, the Adam
always stops spinning it within a few minutes. Be patient, then
remove the tape when it stops.

Keep dirt and dust away from your cassettes. Always store the
tapes in their protective boxes, where they will not be contaminated.
Store the tapes at normal room temperatures—away from extreme
heat and cold.

55

56

THE EASY GUIDE TO YOUR COLECO ADAM

Do not touch the surface of the tape when you remove it from the
drive. Unlike regular cassettes, Coleco’s cassettes do not have a plastic
leader on the end of the tape. The bit of tape that is exposed through
the cassettes’s casing does contain information, and you can damage
it permanently by touching it.

What can you do if you damage a tape? Usually nothing. If the
tape is physically damaged, it will be unreliable even if you can suc-
ceed in reloading it. In some cases, though, you may be able to ram-
tialize a tape so that you can use it again even though you cannot
recover the stored information. To do this, you will need to use a
command in the BASIC programming language, described on pages
113-14 of Chapter 7. This procedure will, however, erase any files you
have stored on the tape.

I hope you won’t feel intimidated by all these “‘don’ts.” If you treat
your cassettes well, they will give you faithful service. You may some-
times get away with carelessness, but it’s best to play it safe.

STORING A WORD PROCESSOR DOCUMENT —

In Chapter 3, you composed and edited texts on the word pro-
cessor. You typed your document, made changes, and printed the
final version on the Adam’s printer.

However, you were unable to store your document permanently.
Once you turned off the computer, the document was cleared from
the memory, and you could not reuse it without retyping it.

The word processor’'s STORE/GET function key lets you save a
document on a cassette. Once you have saved the document, you can
reload it any time you want to revise or reprint it.

Type some text into the word processor and press the STORE/
GET key. A variety of new SmartKey options will appear on the
screen. To save the text you have typed, use SmartKey V—-STORE
WK-SPACE. Other SmartKey options allow you to store just the
screen you are using, or just the highlighted portion of your text. You
will rarely need these options—just store the entire document.

Put a blank cassette in the drive, if you haven’t already done so.
One blank tape comes in the box with your Adam, and you can buy
others from Coleco. If you forget to insert your tape, the Adam will
ask you to do so.

THE CASSETTE DRIVE

When you press SmartKey V to store the workspace, the computer
will ask:

SELECT DRIVE

If, like most people, you have only one tape drive, you will have only
one choice: SmartKey III, for DRIVE A.
When you press this key, the computer will ask for something else:

FOR NEW FILE
TYPE FILE NAME
DRIVE A

A file is a block of information that you want to use all at once in the
computer. A word processor document is normally a single file—you
save it as a unit, then reload it all at once.

When you store a document on a cassette, you must always give it
a file name, so that the computer can locate it when you want to
retrieve it. The computer will keep track of each file’s location on the
tape, so that you can later ask for it by name.

Type a name for the file you want to store. The file name can contain
numbers, but the first character must be a letter. Spaces and punctuation
marks are not allowed. The file name can be up to ten characters long,
but no longer. The computer may damage the tape if you use a name that
is too long. Choose a name that describes the file's contents; otherwise,
you are likely to forget where the information is stored.

Once you've finished typing, press SmartKey VI, which now reads
STORE WK-SPACE. The cassette will spin and store your file. You
cannot type other commands at the keyboard while the tape is turn-
ing. You cannot stop the tape either: you must simply wait until it
stops spinning. The computer will then return to the normal
SmartKey labels, and you can type again.

You may sometimes have trouble with this STORE procedure which
is slightly more complicated than most other word processing functions.
The computer will give you a message if you forget to insert a cassette,
forget the file name, or haven’t typed any text to store.

If, however, the tape starts spinning but the computer refuses to
store the file, your problem lies with the cassette. Repeat the procedure.
If the computer still cannot store the file, you may need to replace the
cassette.

2y

58

THE EASY GUIDE TO YOUR COLECO ADAM

If the document is very important, you may want to make a backup.
Record the file again on another cassette, and keep the two copies in
different places. Then, if anything ever happens to your original, you
can use the duplicate.

The Adam also keeps a backup of another sort. If you're revising
a file that you have loaded from a tape, you can STORE it back on
the tape without giving it a new name. The new version will take the
place of the old, but the previous version will remain stored as part
of a backup directory, which you can load if you can’t retrieve the
revised version.

RETRIEVING THE DOCUMENT

Time has passed. You have turned off your computer and cleared its
memory. You now want to go back and reload the document you
saved. To do this, you again start with the STORE/GET function key.

Press STORE/GET. As before, the computer will give you a choice
of various SmartKey options for storing or retrieving a file. In this
case, you want to GET a file, so you’ll need SmartKey VI. When
you press it, the computer will first ask you to select the drive. Press
SmartKey III for DRIVE A.

At this point, the computer will display the message

ONE MOMENT —
GETTING DIRECTORY

Unless you’ve just been using the cassette, the computer will spin the
tape for a few seconds. When it stops, it will display the file directory, an
index of all the documents you have stored on the cassette. Figure 4.1
shows a typical directory: three documents have been stored under
the names Test, Sample, and Demo.

Notice the small black triangle to the left of the first name in the file
directory. Choose the file you want by moving this pointer with the
four arrow keys. Then press SmartKey VI (GET FILE).

The cassette will now begin to spin again to load the file. When it
stops, the computer will return to the usual word processor display,
and the new file will be added to the end of any text now in the com-
puter’s memory. If, as is often the case, you want only the new docu-
ment and nothing of what is on the screen, you should give a CLEAR
command before pressing STORE/GET.

THE CASSETTE DRIVE

T T

1 l| | '-!:I:I i | :::: :.
A A MW
FILE DIRECTORY fli |

L 4 T 1 TR

Ifilﬁlmll.izrllnlll TR T T

BT T ANTERRRTTOTRRTPRARET AR EPREETERYE a
TR AT
ARPTRTRT RPN e
ALRIRTRTRRTERERTERER OV
SO TRTRRTRRRERR MR e
T

R
A T A 1
T
iSO e
T

Figure 4.1: The word processor shows a directory of all the files on the cassette.

Sometimes you may want to see the directory of the cassette with-
out loading a file. Follow the GET procedure to the point at which the
directory is displayed, then press the ESCAPE/WP key. The word
processor will return to the document you were editing, without load-
ing a new one.

SmartKey V lets you use the cassette’s backup directory, which
contains the earlier versions of any files you have saved twice under
the same name. Try this option if you ever have trouble loading a file.
The backup will probably be an outdated version, but you may be
able to load it and work with it. Files that you saved only once under
a given name will not appear on the backup directory.

OTHER FORMS OF STORALE—————

The Adam’s built-in cassette recorder suffices for most people’s
needs. With a single drive, you can use the Adam for everything it
was designed to do: word processing, BASIC programming, and pre-

packaged software.

39

60

THE EASY GUIDE TO YOUR COLECO ADAM

If you plan to do a lot of work, however, you may want to add
another storage device to your system. Coleco is preparing to offer two
storage add-ons that will let you store more data with greater speed.

One option is to buy a second cassette drive, which mounts in the
unused hole to the right of the first drive, on the front panel of the
computer. It must be installed by a dealer.

With the word processor, you can use this second drive in exactly
the same way as the first, It will show up as DRIVE B on the list of
SmartKey options. The BASIC programming language also lets you
use a second drive easily.

To be honest, I think few people would have a need for a second
tape drive. True, it lets you store twice as much information as one
drive, but you can get the same effect merely by switching tapes in the
first drive. As time goes on, Coleco may begin to offer programs that
use a second drive to simplify operations, but for now there is little
need for it.

An optional disk drive is much more useful. A disk drive is a
mechanical device that can read and record information on a flat
magnetic surface. It acts somewhat like a record player, spinning a
circular diskette at high speed and recording information in thin bands
on its surface.

With a disk drive, your computer can read preprogrammed disk-
ettes and can also store and reload diskettes that you program. A disk
drive is faster, more flexible, and more reliable than a cassette drive.
You can use preprogrammed software almost instantly, without hav-
ing to wait for the cassette drive to read through the tape.

A diskette, shown in Figure 4.2, is a 5's-inch vinyl plate covered
with a magnetic recording surface. To protect it from damage, the
magnetic disk is encased in a plastic envelope, with only a few small
holes exposed. In operation, the drive spins the disk inside its enve-
lope and records information on the surface as it passes the oval hole.

The great advantage of diskette storage is its reliability. While you
must treat diskettes with care, they are more dependable than cas-
settes. If you frequently need to store important information on your
computer, you should buy a disk drive rather than rely on the Adam’s
cassettes.

As this book was going to press, the disk drive was not yet available.
Coleco’s preliminary information indicates that the drive will mount on
top of the main computer console. With the word processor, you will be

Figure 4.2: A typical disketie

able to use the disk dnve in much the same way as the built-in cassette
drive. You cannot, however, use a disk drive with the standard Smart-
BASIC programming language. Coleco plans to sell a revised version,
called SmartBASIC II, that will give access to diskettes.

SUMMARY

With the Adam’s cassette drive, you can save word processor docu-
ments and load programs from cassette tapes. This means of perma-
nent storage allows you to save your work so that you won’t have to
retype it every time you want to use it.

The Adam’s high-speed cassette system is faster and more flexible
than traditional forms of cassette storage. It does, however, require a
few precautions. Above all, be careful in storing your cassette tapes so
that you don’t damage their magnetic recordings.

To save or retrieve a word processor document, use the STORE
GET function key. As you store the document, give it a file name, so
that the computer can locate it on the directory when you want to
reload it.

SECTION 3

BASIC
PROGRAMMING

Chapter

Commands
Of Your Own

In the preceding chapters, we have looked at programs designed by
other people. With commercial software you can put your Adam to
work for you, but only for what the program was written to do. With
the word processor, you can easily do a specific task, but nothing else.

If you want to do something for which you can’t buy a commercial
program, you can write your own. It takes a little work, but once you
have mastered a few simple commands, you can learn to make your
computer do exactly what you ask.

With this chapter, you will begin to use your Adam’s SmartBASIC
programming language, which was included with your system on a
cassette tape. BASIC stands for “‘Beginners’ All-purpose Symbolic
Instruction Code,” if you can believe that. BASIC is easy to learn
and simple to use; because of this, it has become the most popular
language for small computers such as the Adam.

Of course, you don’t have to write your own programs. Many
people prefer to use preprogrammed software on their computers,
rather than take the time to learn a computer language. However,
programming is a good way to learn more about your computer. By
giving your own commands, you can gain direct control over the
machine and can make it do what you want. Even if you later decide
to stick with preprogrammed software, you may want to know some-
thing about how the computer actually works.

In this chapter and the next, we will not be writing full programs,
but merely single commands that tell the computer to do one thing at
a time, In Chapter 7 we will begin combining commands to form

entire programs.

66

THE EASY GUIDE TO YOUR COLECO ADAM

At the beginning of this chapter, you will learn how to load the
SmartBASIC tape and how to use the keyboard to type commands.
For the most part, you will use the keyboard just as you did with the
word processor, typing words onto the computer’s display screen. The
keyboard does, however, work a little differently in the BASIC mode,
so you will need to learn some of its peculiarities.

At the same time, you will also learn how to control the words your
computer displays on your television screen. In BASIC, the screen
has two functions. First, it displays everything you type on the key-
board, so that you can see what you have written. Second, it displays
the computer’s responses to your commands.

This chapter introduces a simple command called PRINT, which
lets you display a single line of text or numbers. As you learn more
about this command, you will be able to position the text on the
screen and clear unwanted clutter from the display.

Some of this may seem trivial. Why go through all this trouble just
to have the computer say Hello? Why learn commands that let you
clear the screen? Be patient. These are building blocks for the rest of
the book. Before you can do anything more complicated, you need to
know how to type commands into your computer and how to inter-
pret its responses. Once you’'ve passed this step, you can do many
interesting things.

LOADING THE BASIC TAPE

Coleco, unlike most other home computer manufacturers, chose to
provide the BASIC language on a cassette tape, rather than build it
directly into the computer. This decision let Coleco build the word pro-
cessor into the Adam, but added an inconvenience: you have to load
the SmartBASIC tape every time you want to program the computer.

Take care of your BASIC tape! It is the only one you've got, and it’s
essential for any programs you may want to write or run. You cannot
copy the tape, and you must buy another if you need to replace it. So
be very, very careful.

Read the precautions in Chapter 4 concerning Adam cassette tapes.
Several of these warnings are crucial. Don’t put the BASIC cassette
on top of the printer or leave the tape in the drive when you turn the
machine on or off. Never touch the magnetic recording surface. And

COMMANDS OF YOUR OWN

don’t use the BASIC cassette to store any programs or word process-
ing files; use blank cassettes for storage.

I recommend the following procedure for loading the BASIC tape
into the computer’s memory:

1. Turn on the machine without a tape in the cassette drive,
just as if you were using the word processor. ADAM’S
ELECTRONIC TYPEWRITER will appear on the screen.

2. Insert the SmartBASIC tape into the cassette drive, with the
labeled side facing outward. Close the door on the drive.

3. Pull the RESET COMPUTER switch, located just to the
left of the cartridge slot on the top of the computer. The tape
drive will start to spin and the computer will load the
BASIC language into its memory. This will take about a
minute, after which the screen will look like Figure 5.1.

4. Remove the BASIC cassette from the drive and put it back
in its storage box. Put it away in a safe place until you need
to use it again. Do not leave the cassette in the drive while
you are using the computer.

If you had problems with the procedure at any step, go back to the
beginning and start over. If you were able to get to the word processor
screen, but the BASIC cassette wouldn't load, there may be some-
thing wrong with the cassette. Try loading it again, then check with
your dealer if it still won't work.

You will rarely need to reload the BASIC tape while using the com-
puter. If you type a command or run a program that causes the
machine to “lock up” and not respond to anything you type, you will
have to put the BASIC cassette back in the drive and pull the RESET
COMPUTER switch to reload it. You can also reload the cassette
any time you feel hopelessly lost and don’t know how to clear the
machine to get back where you were. Reloading BASIC erases every-
thing you had just stored in the computer’s memory and returns the
machine to its initial state.

THE BASIC KEYBOARD

To type commands or programs, you need to use the BASIC editor.
This is the part of the BASIC language program that lets you type

67

68

THE EASY GUIDE TO YOUR COLECO ADAM

Coleco

SmartBASIC Ul . @&

Figure 5.1: The SmartBASIC start-up screen.

lines on the screen and make changes in them. You will find you can
use the keyboard and the screen in essentially the same way that you
used the word processor. Some of the fancier word processing options
are not available, but you can type most of your commands just as
you would on a typewriter.

The BASIC screen editor is separate from the word processor
because it is used for a different purpose. In BASIC you type words
and commands that direct the computer’s activity; with the word pro-
cessor, you type English sentences that will be reproduced on the
printer. Because most commands in BASIC are just one line long,
you don’t need all the powerful editing commands that you used with
the word processor.

At the bottom of the screen, you will see a single bracket (]) and a
flashing underline. The bracket is a prompt, a sign that the BASIC lan-
guage is loaded in the computer’s memory, ready to accept com-
mands. As in the word processor, the cursor indicates where your
next typed character will appear on the screen. The bracket always
appears at the beginning of the line when the computer is expecting
you to type a command.

COMMANDS OF YOUR OWN

Try typing some letters on the screen—just anything will do for now.
You can type on the keyboard just as you did with the word processor.
When you press a key, the letter will be displayed as lowercase, or as a
capital if you hold down the SHIFT key. If you press the LOCK key,
all the letters will be capitalized until you press the LOCK key a second
time to disengage it.

As you type, you might notice a few of the peculiarities of the key-
board. First of all, there are keys for the numbers 0 and 1. If you are
used to a standard typewriter, you may be accustomed to using the let-
ters O and L for these digits. You can’t do this when giving commands
to the computer: you must give it numbers when it expects numbers.

If you have been using the word processor, you may have grown
accustomed to using the SmartKeys I through VI and the special
function keys such as DELETE, INSERT, and MOVE/COPY.
Unfortunately, you cannot use these helpful keys with the BASIC edi-
tor. The computer will ignore these keys if you press them, or may
even be confused by them.

You can still make some changes in the lines you are typing. You
can use the BACKSPACE and the four arrow keys to move the cur-
sor around the screen. In BASIC, the BACKSPACE key is identical
to the left-arrow key.

For the moment, you will want to make corrections in a line you
have just typed, so you will be relying on the left and right arrow
keys. When you press the left arrow or the BACKSPACE, the cur-
sor moves one space to the left. The letter remains on the screen, but
it 1s erased from the computer’s internal image of the typed line. If
you then type a new character, it will replace the one under the cur-
sor. If you want to restore any of the characters you backspaced
over, you must run the cursor back across them by using the right-
arrow key.

You can also use the up and down arrows to move the cursor to
other lines on the screen. You might remember that the word pro-
cessor moves lines down into the black “roller” at the bottom of the
screen. In BASIC, you do not move the lines down the screen.
Instead, you move the cursor up so that it is flashing on the line you
want to change. You cannot return to a line that has disappeared off
the top of the screen.

Although you can edit and reuse lines you have already typed by
using the up and down arrows, this is a rather complicated procedure.

70

THE EASY GUIDE TO YOUR COLECO ADAM

For the time being, just retype the lines you want to reuse. We’ll
come back to this subject in Chapter 7.

If you type past the right edge of the screen, the computer will con-
tinue to display your letters on the line below. This movement re-
sembles the word processor’s except that the BASIC editor does
not worry if it splits a word in two. The computer, in fact, treats the
two lines as one long line. You can type a single command of up to
four full lines.

RETURN AND THE ERROR MESSAGE

If you're accustomed to an electric typewriter or the word pro-
cessor, you might be tempted to press the RETURN key at the end of
a line you have typed. In BASIC, the RETURN key has a special
function: it tells the computer to take the line you have typed and
read it as a command.

Try typing a line of text such as this:

This is not a command.

Then press the RETURN key. The computer will object with an
error message, as shown in Figure 5.2.

What is happening here? When you press the RETURN key, the
computer tries to read your line as a command. If it can understand
the instructions, it will follow the command or store it in its memory.
[f it cannot understand your meaning, the computer assumes you
have done something wrong, and prints an error message. Fortu-
nately, errors are seldom disastrous. You can continue by just typing
another command.

You might object that your line made perfect sense. It does to you
and me, I agree, but not to the machine. Computers require that you
do things in exactly the way they expect. Standard English sentences
are much too complicated for the computer to understand: it is lim-
ited to more specific commands. Later in this chapter, you will learn
some commands that are meaningful to the machine.

Don’t be put off by error messages. They are merely the com-
puter’s way of saying it couldn’t understand what you did. In this
case, for instance, we typed something that made perfect sense to us,
but not to the computer. The error was its fault, not ours.

COMMANDS OF YOUR OWN

d .

=] n
d .

CoOmMmmoG
C cComman

Command

Figure 5.2: You get an error message if you type a line that the computer
can’t understand as a command.

Errors are part of the natural course of mastering your computer,
and you shouldn’t be ashamed if you get a few. Your computer can
understand what you're saying only if you say it exactly in the form
required. If you mistype even a comma, the computer will not under-
stand you.

The computer will usually help you find your mistake by putting a
small arrow under the first letter it couldn’t understand. In Figure
5.2, for example, the arrow is beneath the i in ‘is’. Your mistake will
usually be to the left of this mark—in this case, the error started right
at the beginning, with the word “This,’’ since no part of the line was
valid as a command.

As you type the commands from this book, make sure that you
copy them exactly as they are printed, right down to the last quota-
tion mark. If you get an error message for any line you type, check it
letter by letter against what’s printed here: you might have misspelled
a word or lost a punctuation mark.

Most other computers insist that you capitalize all the letters of a
BASIC command. The Adam’s BASIC does not. It doesn’t care

71

72

THE EASY GUIDE TO YOUR COLECO ADAM

whether you type capitals or lowercase: it treats them both alike. You
are therefore free to press the LOCK key or not, as you choose.

I suggest that you type everything in lowercase. You could use the
LOCK key to type capitals, but then you will have to lock and unlock
the keyboard in every line that has a number.

I use lowercase letters in most of the examples in this book, so that
you can type the lines exactly as they appear. Some of the program
listings in later chapters use capital letters to match messages that
appear on the screen, but you can still type them in lowercase.

I do, however, use capitals for command words when they appear
in the main text of this book; for example, we’ll look at the PRINT
statement in the next few pages. If you go on to read other computer
books, you will find that most use all-capitals for command words.

YOUR FIRST COMMAND: PRINT

So far, you have merely typed some words and letters on the screen.
This is easy enough, but it doesn’t let you do anything you couldn’t do
more easily with the word processor. To control your computer, you
have to learn commands that the computer can understand.

In this section, you will learn your first command: the PRINT
statement. This lets you display a string of letters, numbers, and even
the results of calculations on the screen. For right now, you will use
this command only to have the computer retype words and phrases,
but later, you will be able to apply it in many ways. By trying these
simple experiments with PRINT, you will also learn what a command
is and how it affects the computer.

To give a command, you type a line on the screen and press the
RETURN key. The computer will then read the line you typed and
try to follow its instructions. If it can’t make sense of the line, the
computer will give you an error message.

Type the following line, just as it is:

print “Hello"

Use the SHIFT key to type the capital H. When you’ve finished typ-
ing the line, press the RETURN key. The computer should display
the word Hello, as shown in Figure 5.3. When you try this, you may
have other words higher on the screen. If you get an error message
when you press RETURN, you have probably made a mistake in

COMMANDS OF YOUR OWN

typing. Make sure you spelled PRINT correctly and put the quota-
tion marks before and after the word Hello.

You have typed your first command! The computer recognizes
PRINT as a keyword with a special meaning. When the computer sees
this word, it knows to search through the rest of the line and print the
message enclosed in quotation marks. It finds the word Hello, so that
is the message it displays. Note that the computer does not reproduce
the quotation marks: they are merely a sign that the word Hello is the
message to be printed. After displaying the message, the computer
drops down one line and types the bracket symbol, to show it has
finished and can accept another command.

The results may not be impressive, but you have made an impor-
tant step with your command. You have asked the computer to do
something, and you phrased your request in a way it could under-
stand. It read your command and displayed the results on the screen.
With this step, you have begun to control your computer.

You can try many variations on this simple PRINT statement. You
can put anything you want between the quotation marks and it will

Figure 5.3: How the computer should react to your first command

Fik

74

THE EASY GUIDE TO YOUR COLECO ADAM

be printed exactly as you typed it. You can use lowercase and capital
letters however you wish within the quotation marks: they will be
reproduced as you type them. Also, any spaces you include between
the words will be included in the message the computer prints. Figure
5.4 shows some of the things you can do.

The next-to-last PRINT statement in Figure 5.4 runs across more
than one line. That is fine, as long as you type the entire command as
a unit, without pressing RETURN. If you haven’t finished your mes-
sage when the cursor reaches the edge of the screen, just keep typing:
the computer automatically goes on to the next line down. You can
type commands up to four and one half lines long.

The last line of Figure 5.4 shows an important use of the PRINT
command. If you do not type anything after the word ‘print’, the
computer will print an extra blank line on the screen, in addition to
the one that automatically appears above the bracket symbol.

You can also give more than one command at a time. Instead of
pressing RETURN at the end of the first command, type a colon (:)
and then your second command. You can add as many commands as

"Examel
£ m e

o=
3=
"

2 N 2 €2 M2 = AD O3

- N0 -

™

-

Cld M

- -
e
il
Q
)

N3
Pc Wo =~ o

-
re »<

v
n300 +&£ =g MD
>3

{ng
nI3

-7
Mt -
D
ur

T Do Ok v
|

T Od
o
- -

"
No b
U

O wnd -
*.- -“

O
=-aue N

L

<
2
nwo <

=3na #w 0w
m

T e g
wae
TI=0N

P
x
P
L]
&
P
u
P
Y
3
o
a
4

3 NnePy 39 39 Uy £

d
-

Il

Figure 5.4: Some examples of the PRINT statement.

COMMANDS OF YOUR OWN

fit within the limit of four and a half screen lines. When you’re done,
press RETURN and all the commands will be carried out in order.

Figure 5.5 shows how you can use blank lines and multiple state-
ments to improve the appearance of your screen display. The first three
PRINT statements with no message tell the computer to put three
blank lines on the screen. The fourth PRINT statement contains the
first line of a message, which begins with eight blank spaces so that it
will be centered on the screen. The fifth adds a blank line so that the
message will be double-spaced, then another displays the second line of
the message. Two final PRINT statements put some extra blank lines
between the message and the bracket that appears below it.

This (:umpound statement is more cumplicawd than auything
you’d usually want to do, but it shows how you can organize your
screen display. By adding more blank PRINT statements and extra
Spa(:t‘s to Ihlf ['l'l(‘S.‘iZiglfS, you L'()Uld ha\‘t.’ Tht_’ l'(lll]pu[L’I' move St‘\-'f;'l"dl
lines down and display the message in the center of the screen. How-
ever, you will learn an easier way to do this in the pages ahead.

am typing
middle of the

Screen

Figure 5.5: Blank lines and multiple PRINT statements can make your
screen more readable.

75

76

THE EASY GUIDE TO YOUR COLECO ADAM

PRINT is one of the most important commands because you will
always need to display results on the screen. With the PRINT state-
ment, you can do this in any way you wish.

CONTROLLING THE SCREEN

It is quite difficult to produce a readable screen by using the
PRINT statement alone. A simple PRINT statement will display
your message on the line immediately below your command. For clar-
ity you can insert space between lines by using blank PRINT state-
ments, as in Figure 5.5, but this leads to complicated commands.

Your Adam gives you several other commands that let you clear the
screen and position the cursor where you want it. By combining these
other commands with PRINT statements, you can create a more
readable display.

The HOME command lets you clear the screen. Anytime you find
the screen too cluttered, you can type

home

When you press RETURN, the computer will erase everything dis-
played on the screen, then place the cursor in the upper-left corner.
You can then type or print messages on a clear slate. Note that the
HOME command is different from the HOME key that you use with
the word processor. If you press the HOME key, the cursor will move
to the upper-left corner of the screen, but the display will not be
cleared. To erase the screen, you must type HOME as a command
word and press RETURN.

You can use the HOME command with a PRINT statement to dis-
play a message against a blank screen. Type the following line and
press RETURN:

home: print “Hello"”

The computer will clear the screen, then display the message ‘Hello,’as
shown in Figure 5.6. This greeting is much more readable than Figure
5.3, in which the original PRINT command remains on the screen.

The set of tab commands lets you position the cursor anywhere
you want on the screen. These commands allow you to move directly
to a certain row or column without printing spaces or blank lines.

COMMANDS OF YOUR OWN

Think of the text screen as a grid 31 columns wide and 24 rows
high, as shown in Figure 5.7. Each row and column is given a num-
ber. The columns are numbered 1 to 31, from left to right. The rows
run from 0 to 23, top to bottom. Don’t be confused by the fact that
the columns start their numbers from 1 and the rows from 0. It’s just
a quirk of the Adam’s design.

With the VTAB command, you can set the vertical position of the
cursor. To place the cursor halfway down the screen, you could type

viab 12

The cursor will immediately move to the twelfth row down from the
top of the screen.

VTAB merely moves the cursor; it doesn’t print anything. To place
a message in row 12 at the left edge of the screen, follow the VTAB
command with a PRINT statement:

vtab 12: print “Hello"

Figure 5.6: By combining the HOME command with a PRINT statement,
you can clear the screen before displaying your message.

i

78

THE EASY GUIDE TO YOUR COLECO ADAM

Column 1 Column 31

+
+
S

Figure 5.7: The Adam’s screen is arranged like a grid.

If you want your message displayed against a blank screen, add a
HOME command to the beginning of your line:

home: vtab 12: print "Hello"

You can use the VTAB command to put the cursor on any of the
rows from 1 to 23. The top row on the screen is numbered 0, but
unfortunately the computer will not accept the command.

viab 0

Use the home command to move the cursor to the top line of the
screen.

To move the cursor horizontally, you can use the HTAB command.
As with VTAB, you can give this command by itself:

htab 25

The computer will move the cursor to column 25. However, since it
has not been given a message, it will drop straight down to the left
edge of the next line on the screen. It therefore looks as though the
computer didn’t do anything. To see the HTAB command work,
combine it with a PRINT statement:

htab 25: print “Hello"”

COMMANDS OF YOUR OWN

The computer will move the cursor, display the word Hello near the
right edge of the screen, and then drop down to the next line.

VTAB and HTAB are often used together in order to move the cur-
sor to a specific point on the screen. Suppose you want to place an X
right in the center of the screen. You would need to move the cursor
halfway down on the vertical scale of 1 to 23, and halfway across the
horizontal scale of 1 to 31. The following command would do that:

vitab 12: htab 16: print “X"

Note that the tab commands 5}}tcif}-' ()nly the starting p()int for the
printed message. If you want to center a longer message, change the
HTAB command, as in Figure 5.8.

You can use one other formatting feature to arrange your display.
With a simple PRINT statement, the computer drops down to the
next line after it finishes displaying your message. If you then display
another message, it will appear on a fresh line. To review, type the
following double command:

print “First”:print “Second”

Ivtab 12:-htab 13:print

“Center”

Figure 5.8: Use the VTAB and HTAB commands to center a word on the screen.

~1

80

THE EASY GUIDE TO YOUR COLECO ADAM

The words will appear on two different lines, just as if you had typed
separate PRINT statements.

If you want to display the second message on the same line, type a
semicolon (;) after the first message. Try the following:

print “First”;:print “Second”

The semicolon tells the computer not to start a new line after the first
message. Instead, the computer runs the two words together:

FirstSecond

A semicolon after “Second’” would make no difference here, since the
computer always drops down to a new line at the end of the last com-
mand in a group.

You can also combine several messages in a single print statement.
Instead of using the two PRINT statements in the preceding ex-
ample, you could type:

print “First”;"Second”
As before, the semicolon tells the computer to run the two messages

together. Of course, you could achieve the same effect with a single
PRINT message:

print *FirstSecond"

As your commands become more complicated, however, multiple
messages will give you more flexibility.

In these examples, the two words have been run together without
any space. If you want a space between the two messages, just type a
space as a part of the first message, immediately following the word
‘First’.

If you want a larger space between the messages, you can replace
the semicolon with a comma. In a PRINT statement, a comma tells
the computer to separate the messages into two columns on the
screen. Type the following command line:

print “First","Second”

The computer will display the two messages on the same line, but will
separate them so that the second begins halfway across the screen:

First Second

COMMANDS OF YOUR OWN

The second message always starts in the same column, as long as the
first message is shorter than 15 letters. This technique is often useful if
you need to display a chart in two columns.

Some of these special features of the PRINT command may seem
rather silly while you're typing only one command at a time. Rest
assured, they will become very useful when you begin writing more

complex programs.

OPTIONAL EXERCISES —

Now that you have finished this introduction to your computer’s
keyboard and screen, you might want to try your hand at some
optional exercises. I hope you'll try them, but you won’t need to have
done them to read further in this book.

1. Use the arrow keys to create block letters on the screen.
Move the cursor around and place asterisks (*) to form
large block letters. Remember to use only the arrow keys as
you do this: you will spoil your picture with an error if you
press RETURN.

2. On page 74, we put more than one PRINT statement in a
single command by using colons (:). Write one command
that combines three PRINT statements to produce the fol-

lowing message:

ONE
TWO
THREE

3. Use HOME, VTAB, and HTAB commands to center the
word Bottom on the last line of the screen. Why does the
word get pushed one line up just after it is displayed?

SUMMARY

To type a BASIC command, you use the keyboard just as you
would use a typewriter or the Adam’s word processor. You can correct
errors by moving the cursor backward along the line. Press the
RETURN key to have the computer carry out the command.

81

82

THE EASY GUIDE TO YOUR COLECO ADAM

With the PRINT statement, you can ask the computer to display
messages on the screen. You can display several lines at once by using
several PRINT commands on the same line, separated by a colon.

Using the HOME, VTAB, and HTAB commands, you can make
your screen more attractive and more readable. The HOME com-
mand clears the screen and places the cursor in the upper-left corner.
The VTAB and HTAB commands move the cursor to a specific point
on the screen, so that you can print messages anywhere you want.

Perhaps without realizing it, you have covered a lot of ground in this
chapter. You have learned everything you need in order to type BASIC
commands, and you know how the computer responds on the screen.
Most important, you have given your first command, and the com-
puter gave its response. In the chapters ahead, you will learn many
other commands that will increase your control of your computer.

Chapter
Graphics

If you have played Buck Rogers: Planet of Zoom or any other Col-
eco video game, you know that your Adam can display more than
just letters and numbers on your television screen. It can draw very
colorful pictures and produce impressive animation effects.

This chapter discusses your computer’s graphic display system. You
will learn how to use coordinates, and how to plot points on the
screen. With a few simple commands, you will be able to choose col-
ors, plot points, and draw pictures.

Graphics are one of the most appealing features of your Adam’s
BASIC language. I hope you will enjoy them.

WHAT ARE GRAPHICS?

Graphics refers to any type of display you can put on the screen
other than plain text. Your computer can display pictures such as a
box or a cube, and bar or line graphs. In Buck Rogers: Planet of
Zoom, you saw your computer display animated scenes.

The Adam has two different modes for displaying pictures. With low-
resolution graphics, you can compose pictures made up of rectangular
blocks and thick lines. With high-resolution graphics, you can plot much
finer detail and paint intricate line drawings. By choosing the appropri-
ate mode, you can get just the amount of detail you want. For ex-
ample, to construct a bar graph, you will want to have thick lines, with

84

THE EASY GUIDE TO YOUR COLECO ADAM

relatively little detail. For an intricate picture, you will want finer lines
and greater precision. This chapter gives an overview of both modes.

COORDINATES

The Adam uses coordinates to set up its graphics screens. Coordi-
nates are a way of labeling points on the screen by numbering their
horizontal and vertical positions.

Coordinates always come in pairs. With the first number, you
choose the column, telling the computer how far to move in from the
left edge of the screen. With the second number, you pick the row,
how far you want to go down from the top. The point you choose will
be the box where that row and column meet.

The first number in a pair of coordinates is often called the x-
coordinate; the second is the y-coordinate. Programs in this book will often
use the letters X and Y to refer to horizontal and vertical locations.
When you see a pair of coordinates in the form ‘X,Y’, you can think
of this as “X spaces over and Y spaces down.”

In Chapter 5, you saw an example of coordinates in the 24 x 31
grid for the VTAB and HTAB statements. The number in the HTAB
statement represents an x-coordinate, since it names the horizontal
distance in from the left. The VTAB number is a y-coordinate, deter-
mining the vertical distance down from the top. By combining an
HTAB statement with a VTAB, you were able to name any point on
the grid.

In the two graphics modes, the coordinates are numbered
differently, but the concept is the same. The point in the upper-left
corner is always 0,0 (0 spaces over and 0 spaces down). In the low-
resolution mode, the grid is 40 columns wide and 40 rows high. In
high-resolution graphics, there are 256 columns and 159 rows.

LOW-RESOLUTION GRAPHICS

The low-resolution graphics mode is used to plot solid rectangles
and thick lines. While it does not allow enough detail for real draw-
ing, the low-resolution mode is easy to use and offers brilliant colors.
It is particularly useful for bar charts and other pictures that require
thick lines.

GRAPHICS

To enter the low-resolution graphics mode, type the command

ar

and press RETURN. The screen will be cleared and the bracket
prompt will reappear near the bottom.

The upper part of the screen is now reserved for the graphic
designs you are about to create. You cannot use this region for printed
messages, but you can use it to draw pictures out of points and lines.
This region is called the graphics screen.

The graphics screen does not reach all the way to the bottom,
because the computer has to leave you some room to enter commands
and display text messages. The last four lines are reserved as a fext
window, so that you can still see your commands displayed.

Sometimes you may want to see more text than can fit in the text
window. To do so, you have to return to the regular text mode. Type
the following command and press RETURN:

text

This reverses the GR command and lets you type on the full screen.
You will need to type another GR command if you later want to
return to graphics.

Column 0 Column 39
¥ {
Row 0 = SESSESSSSSSSSss ;

Row 39 —

Text Window

Figure 6.1: The low-resolution graphics screen.

85

86

THE EASY GUIDE TO YOUR COLECO ADAM

Figure 6.1 shows how the screen is laid out in the 40 x40 low-
resolution graphics mode. Columns and rows are each numbered
from 0 to 39, with the point in the upper-left corner numbered 0,0.
The point in the upper-right corner is 39,0—that is, 39 columns over
and 0 rows down. The point at the lower-left corner, which is 0
columns over and 39 rows down, has the coordinates 0,39. Similarly,
the point at the lower right has the coordinates 39,39. These four
points are shown in Figure 6.2.

To name the point in the center of the screen, we need to choose
coordinates halfway between 0 and 39. You could choose either 19 or
20, but we’ll use 19 so that we don’t crowd the right-hand side and the
bottom of the screen. The coordinate 19,19 names the point shown in
the middle of Figure 6.2: it is 19 columns over and 19 rows down.

Before you start drawing, you need to choose a color. Your Adam
offers sixteen colors in each of its graphics modes. The colors in both
modes are essentially the same, but unfortunately, they are numbered
differently. In both cases, the colors are given code numbers between 0
and 15. Figure 6.3 shows the colors codes for the two graphics modes.
When you first switch into the low-resolution graphics mode, the color
is set to 0, or black. Since black points don’t show up against a black
background, you need to choose another color by giving a COLOR

00 O g 39,0

«—— Graphics Screen

0,39 O] 39,39
Text Window

Figure 6.2: Some sample coordinates in the low-resolution graphics mode.

GRAPHICS

command. To draw in a medium green (color number 6), type:
color=6

You can give another COLOR command any time you want to paint
with a different color.

The numbering of the sixteen low-resolution colors are somewhat
jumbled, but they do follow a general order from dark to light. The
quality of the colors will depend on your television and how you have
it adjusted, but you will probably get the most vivid tones from the
colors in the middle: 6 for medium green, 7 for light blue, 8 for
orange, and 9 for medium red.

Now let’s try some graphics. Type the starting commands if you
haven’t already done so:

gar

color=6
These commands select the low-resolution graphics mode and choose
the color green. Any time you want to clear the screen and start over,
Just retype these two commands.

CODE COLOR HCOLOR
7 lution) (high i
0 Black Black
1 Purple Green
2 Dark Blue Dark Red
3 Dark Red White
4 Dark Green Black
5 Gray Medium Red
6 Medium Green Medium Blue
7 Medium Blue White
8 Orange Orange
9 Medium Red Dark Blue
10 Gray Gray
1 Light Red Light Red
12 Light Green Dark Green
B Light Yellow Light Yellow
14 Light Blue Light Blue
15 White Purple

Figure 6.3: The colors for low- and high-resolution graphics.

87

88

THE EASY GUIDE TO YOUR COLECO ADAM

The simplest low-resolution graphics command is the PLOT state-
ment, which lets you fill in one block of the grid with the color you
have chosen. With this command, you name the coordinates of the
point you want to fill. Try typing this line, for example:

plot 0,0

A small green square should appear in the upper-left corner of the
screen.

If it does not, make sure you have given the GR and COLOR com-
mands. Also, make sure that your television is tuned finely enough for
you to see this small square. It is way up in the upper-left corner, so
you may need to move the image to see it. Use the horizontal- and
vertical-hold knobs on your television set to adjust the image.

You can plot as many squares as you wish on the screen. Try a few,
to get a feel for the graphics coordinates. Each PLOT command will
result in another single square of the last color you have chosen
(green, in this case).

In using graphics commands, you may occasionally get the message

?lllegal Quantity Error

This means that you are trying to paint a box that is off the screen—
one of your coordinates is too large. Remember, the maximums for the
X and Y coordinates are both 39 in the low-resolution graphics mode.

With the plot command, you get disconnected boxes. If you want
lines, you'll need to learn two other commands: HLIN and VLIN.
The two work identically: HLIN is for horizontal lines, and VLIN is
for vertical. Let’s start with HLIN.

The HLIN command lets you draw a horizontal bar of any length.
To use it, you need to supply three numbers. First, you must give two
x-coordinates, to name the left and right endpoints of the line. Then,
you must give a single y-coordinate to tell how many rows down from
the top the horizontal line should be. The actual command will be of
this form:

hlin xleft, xright at y

You will type actual numbers to replace the three italicized expressions.

Let’s try some examples. Suppose you want to draw a bar all the
way across the top of the screen. This bar will begin at the left
(xleft =0) and end at the right (xright =39), and run across the top

GRAPHICS

row of the graphics screen (y =0). You therefore type:
hlin 0,39 at 0

When you press RETURN, the bar will appear, colored green unless
you’ve changed to another color.

Suppose you want a shorter line in the center of the screen. You
could type:

hlin 10,30 at 20

As with the PLOT command, you can use HLIN to draw as many
lines as you wish on the screen. Try some experiments with lines of
your own.

The VLIN commands follow the same principle to produce vertical
lines. But now the first two numbers represent the y-coordinates of
the top and bottom endpoints of the line, and the third number
names the column in which the vertical line should fall. The general
form of the VLIN command is therefore:

viin ytop, ybottom at x
To place a vertical line down the center of the screen, try:
viin 0,39 at 20

When using HLIN and VLIN, you must be careful to avoid one
pitfall: the first two numbers in the command must be different. You
must always draw a line from someplace fo someplace else. If you try
to draw a line whose endpoints are the same number, the computer
becomes confused and draws a bizarre pattern across the entire
screen. It may also leave you without any way to type other com-
mands. This is a rather serious defect in the Adam’s BASIC lan-
guage, which you must work around. If you do fall into this trap, you
can try to regain control by typing

text
even though you can’t see your letters appear on the screen. If this
doesn’t get your cursor back, you may need to reload the BASIC cas-
sette, using the instructions in Chapter 5.

To see these concepts in action, let’s draw the box shown in Figure
6.4. Start by clearing the screen:

ar

89

THE EASY GUIDE TO YOUR COLECO ADAM

Jelot 36, 306
= N

Figure 6.4: Drawing a box on the screen.

We could continue using green, but let’s choose orange:

color=8
Now let’s draw the top of the box, from 10 units at the left to 30 at
the right, on the tenth row down from the top:

hlin 10,30 at 10
Then add the bottom of the box on the thirtieth row:

hiin 10,30 at 30

Now do the same for the two sides:
vliin 10,30 at 10
vlin 10,30 at 30

You’ll notice that the computer does not connect the lines in the

lower-right corner. So you’ll need to add one more square with a
PLOT command:

plot 30,30
The computer omitted this box because with the HLIN and VLIN

GRAPHICS

commands, it draws the line only up to the second endpoint, but
not including it.

There are several ways you can erase portions of your screen. The
simplest is to paint with black, the color of the background, by typing

color=0
When you do this, your PLOT, HLIN, VLIN statements become
erase commands, until you choose another color. Try typing the follow-
ing lines:

color=0
hlin 10,30 at 10
The top of the box should disappear. (If it doesn’t, you probably mis-
typed one of the coordinates. Try retyping the last two examples.)
If you want to erase the whole screen, the best thing to do is to type

ar
This resets the screen and lets you start all over. You now need to type
another COLOR command before you can paint again.

HIGH-RESOLUTION GRAPHICS

While the Adam’s low-resolution graphics are quite useful, you are
limited to plotting squares, rectangles, and thick lines, In the low-
resolution mode, you cannot draw a picture with fine details, nor one
with diagonal lines. You can draw only vertical and horizontal bars.

As an alternative, your Adam offers a high-resolution graphics
mode that lets you plot small points and narrow lines. This allows you
to use finer detail and diagonal lines in the pictures you are drawing.

The high-resolution graphics screen is divided into a fine grid 256
dots wide and 159 dots high, as shown in Figure 6.5. The graphics
coordinates follow the same system as the coordinates in the low-
resolution mode, except that there are more rows and columns. Fig-
ure 6.5 shows the coordinates you would use to plot the points in each
corner of the graphics screen.

All the high-resolution graphics commands begin with the letter 4.
While the commands are different from the ones you learned for
low-resolution graphics, they are very similar. All the low-resolution
commands except for HLIN and VLIN have corresponding high-
resolution commands.

91

92

THE EASY GUIDE TO YOUR COLECO ADAM

0,0 O 2550

l¢——————— Graphics Screen ——

158,0 O [1 255,158
Text Window

Figure 6.5: The layout of the high-resolution graphics screen.

To enter the high-resolution graphics mode, type the command
hgr

Like the GR command in low-resolution graphics, this command
clears the screen and places the cursor down in the text window,

As in the low-resolution mode, you must use a command to choose
a color before you start. Otherwise, all the points will be black and
invisible against the screen’s background.

To select a color, use the command HCOLOR, with the codes
shown in the right column of Figure 6.3, on page 87. These are essen-
tially the same 16 colors as in low-resolution graphics, but they are
numbered differently. To change the color to medium red, you would

type:
hcolor=5

On most screens, the sharpest high-resolution colors are medium red
(5), medium blue (6), orange (8), and dark green (12).

A single command, HPLOT is used to draw both points and lines
in high-resolution graphics. This command tells the computer to paint
points and lines on the screen with the color you have last chosen.

To plot a single point on the screen, use the HPLOT command
with one set of coordinates. Make sure you're in the high-resolution

GRAPHICS

graphics mode and that you've chosen a color, then type:
hplot 20,15

A pinpoint of light should appear in the upper-left corner of the
screen. If it does not, try typing the HGR and HCOLOR commands
again and make sure your set is tuned finely enough to see this iso-
lated point.

The ‘20,15’ in the HPLOT statement names the coordinates of the
point: 20 units over from the left, 15 units down from the top. These
are relatively small movements on the 256 x 159 high-resolution grid.
If you want to see exactly how small, plot the point in the upper-left
corner:

hplot 0,0

Note that this point would be much further from the edges in the low-
resolution graphics mode.

On some television sets, this corner point might fall off the left side
of the screen. You can usually bring it into view by adjusting the tele-
vision’s horizontal-hold knob, but on some sets even that won’t help.
If you cannot get this point on your screen even after adjusting your
set, you may need to avoid using the first few columns of the graph-
ics screen.

The HPLOT command also lets you draw lines between points. To
draw a line, you need to name two sets of coordinates: one for the
starting point and one for the destination. The HPLOT command for
a line looks like this:

hplot 20,20 to 255,158

Type this command and press RETURN. The computer will draw a
red line from a point near the upper-left corner all the way down to
the lower-right corner of the graphics screen.

If you look closely, you will see that this diagonal line is not exactly
straight. This ‘*staircase effect”’ is caused by the limited resolution of a
television screen. A line may also appear to have a color other than
red, depending on the angle at which it is drawn on the screen. High-
resolution lines on the Adam tend to look pale or purplish, and may
abruptly change color at a point in the middle. Horizontal lines give
the most consistent colors.

93

94

THE EASY GUIDE TO YOUR COLECO ADAM

In most cases, you need to give the coordinates of two points to draw
a line with HPLOT. When you give the HPLOT command, you ask
the computer to pick up its graphics paintbrush and plot a point at the
first set of coordinates. Then by adding the word ‘to’ and a second set
of coordinates, you ask the computer to draw a connecting line to the
second point. Try a few more line commands, such as these:

hplot 0,90 to 210,90
hplot 178,15 to 29,109
hplot 255,158 to 0,0

Some of these lines may seem to have been drawn backward or to
cross other lines. That is okay: the computer always draws from the
first point in the command to the second.

Each of these commands produces a line unconnected to the others
because the computer lifts its paintbrush each time to move to the
starting point of the new line. Often, however, you will want to con-
nect a new line to the endpoint of the preceding one, so that you can
produce an unbroken series of lines.

To continue your line from the preceding line’s endpoint, start
right off with the word ‘to’ in your HPLOT command, without nam-
ing a starting point. Try typing the following command, for example:

hplot to 128,0

The computer will draw a line from the end point of your last line to
the top-center of the screen.

You can also use the HPLOT command to draw several lines at
once. Type a single HPLOT command with three or more sets of
coordinates, each separated by the word ‘to’. For example, try typing

hplot 10,45 to 35,60 to 15,140

The computer will first draw a line from the starting point 10,45 to
the first endpoint, 35,60. Then, it continues and draws another line to
the final endpoint, 15,140. In this way, an HPLOT command can
draw a whole series of lines. The lines must, however, be connected:
you can have only one starting point in each HPLOT statement. You
may find it easier, though, to use separate HPLOT commands to
draw extended series of lines.

The word ‘to’ is therefore the key to how the computer responds to
your HPLOT commands. When you name a point at the beginning of

GRAPHICS

an HPLOT command without typing ‘to’ before it, the computer will
move to those coordinates without drawing a line. If you then go on to
type a set of coordinates preceded by the word ‘to’, the computer will
draw a line to that new point from the previous line’s endpoint. You
can add as many ‘to’ points as you want after the initial command
word HPLOT.

As an example of the HPLOT command, let’s draw a box like the
one we made using the low-resolution commands. Start by clearing
the screen, with the lines:

hgr
hcolor = 8

Then give the following four commands:

hplot 20,20 to 140,20
hplot to 140,140
hplot to 20,140

hplot to 20,20

Each HPLOT command draws an edge of the box, and the fourth
one brings the paintbrush back to its starting point. The first com-
mand specifies an initial starting point for the line, but the other three
do not because each line starts from the endpoint of the line before.
The final result should be a box like the one in Figure 6.6.

If you want, you can also combine these four HPLOT commands
into one. Clear the screen by typing

hgr
hcolor = 8

Then type
hplot 20,20 to 140,20 to 140,140 to 20,140 to 20,20

This extended command will run onto a second line on your televi-
sion screen, but that doesn’t matter. The line will still work.

In most cases, it is better to use shorter commands. The compound
HPLOT command does the same thing in fewer words, but you will
have to correct the entire command if you make a single mistake.
With separate commands, you can usually back up and correct your
errors right after you make them.

95

96

THE EASY GUIDE TO YOUR COLECO ADAM

Jheplot to 20,28
a._

Figure 6.6: Drawing a box on the screen.

As with low-resolution graphics, you can change colors at any time.
You'll discover, though, that if you plot points or lines of different col-
ors near one another, the colors of some points may change. Your
screens will generally look all right as long as you don’t try to paint
regions of different colors right next to each other. Paint with the color
black if you want to erase portions of your screen.

This brings us to the end of our brief introduction to the Adam’s
graphics. In subsequent chapters, we will use these graphics features
in many different ways.

OPTIONAL EXERCISES

1. Draw a series of horizontal bars across the screen using low-
resolution graphics. Type a COLOR command before each
line, so that each bar is a different color.

2. Rerun the commands you used to draw the orange box in
Figure 6.6. Then give a second series of commands to draw

a blue box inside.

GRAPHICS

SUMMARY

In this chapter, you have learned how to draw pictures on the
screen using your Adam’s two graphics modes. By naming a point
with its coordinates, you had the computer plot it or draw a line to it.

The three basic commands in the low-resolution graphics mode let
you plot solid rectangles and continuous lines. With the PLOT com-
mand, you can fill a single rectangle on the screen. With HLIN and
VLIN you can draw an extended horizontal or vertical bar on the
screen.

In high-resolution graphics, you can draw detailed lines and points.
While the fine detail makes it harder to fill full regions of the screen, the
high-resolution mode is generally the more flexible. A single general-
purpose command, HPLOT, is used for all high-resolution drawing.

You have now learned a variety of BASIC commands. In Chapter
5 you used the PRINT statement to display messages on the screen,
and the HOME, HTAB, and VTAB commands to arrange text mes-
sages and clean up your screen display. In this chapter, you have
learned to paint pictures on your screen. All these commands will be
useful in the chapters to come.

To use these commands more efficiently, you need a way to save
them. The procedure for drawing a low-resolution box, for instance,
took seven separate commands, each of which had to be entered from
the keyboard. Suppose you wanted to draw the box again. Would you
need to retype all those steps again? No, there is an easier way, and
that is the subject of the next chapter.

-

Chapter
Writing
a Program

In Chapters 5 and 6, you learned how to give commands that print
messages and draw pictures. As you gave your commands, the com-
puter immediately put them into action.

In those chapters, however, there was one great limitation. You had
to type every command from the keyboard. If you made a small mis-
take in a series of commands, you had to clear the screen and start
over from the beginning. Also, when you wanted to repeat a certain
task (such as drawing a box), you needed to retype the whole series of
commands. These restrictions limited you to fairly short procedures.

With a program, you can store a series of commands in the com-
puter’s memory. Then, when you are ready, you have the computer
run the entire series as a group. The computer will react to the com-
mands as if you had just typed them on the keyboard, but it will store
them after it has finished, so that you can reuse them. If one of the
steps is wrong or if you want to try a variation, you are free to alter
the program and run it again.

Because programs let you design a procedure and reuse it many
times, they can be used for complicated tasks. If you had to type your
commands one by one, you might never want to try anything very
complex. But with a stored program, you can combine commands
into powerful procedures that you can use over and over. Many
people create programs involving hundreds of stored commands.

Programs also give you full control over your computer. In a pro-
gram, you can store words and numbers as you go along, and per-
form calculations. You can take a group of commands and run them

100

THE EASY GUIDE TO YOUR COLECO ADAM

over and over in a loop, or have your computer do something only if
a certain condition is fulfilled. With these powerful tools, you can
direct your computer to perform complex tasks, then sit back while it
does the work.

This chapter will show you how to store a program in the com-
puter’s memory and how to run it. A few short hints and examples will
help you get started. Also, you will learn how to use your Adam’s cas-
sette recorder and printer to save your programs and print your work.

STORING YOUR PROGRAM

A program consists of a series of commands stored in the com-
puter’s memory. When you are ready to use the stored commands,
you tell the computer to run the program. It then carries out the com-
mands in order.

Before you do anything else, type

new

and press the RETURN key. This NEW command tells the computer
to clear everything from its memory and from the screen.

You should give the NEW command every time you begin a new
program. If you don’t, program lines may remain in the computer’s
memory from some other task. These leftover lines could slip into the
program you are typing and disrupt it. You should make the NEW
command a habit.

If your computer is still in the high-resolution graphics mode from
Chapter 6, type the command

text

Many of the examples in this chapter use the regular text mode,
rather than graphics—you’ll need to switch back to text so that you
can follow.

You can store any BASIC command as a line in a program by plac-
ing a number in front of it. This statement number signals the computer
to store the command rather than respond to it immediately.

In Chapter 5, you typed your first command from the keyboard:

print “Hello"

WRITING A PROGRAM

When you pressed RETURN, the computer displayed the word
Hello on the screen. Now let’s try a small variation. Type the follow-
ing line:

10 print "Hello"

When you press RETURN, nothing seems to happen. The statement
number before the PRINT command told the computer to store the
line in its memory. There is nothing special about the number 10; we
could have used any number.

You can check to see that the line is stored by typing another
command:

list
In response, the computer will display all the lines it has in its mem-
ory. In this case, there is only one such line, number 10.

Now let’s ask the computer to carry out the stored command. To
do this, type

run

and press RETURN. You get the same result as you did when you
typed the command without a number: the computer prints the word
Hello on the screen. The action is delayed, however, until you give
the RUN command.

If you again type

run

the computer will repeat the commands you have stored; here it will
again display the word Hello. You can do this as many times as you
like: your commands remain stored in the computer’s memory until
you turn the power off or clear the memory by typing

new

To add a second line to your program, just type another command
with a different statement number in front of it. Since we used 10 for
our first command, let’s use 20 for our second:

20 print “"Hello Again”

When you press RETURN, the second statement will be stored in
the memory along with the first.

101

102

THE EASY GUIDE TO YOUR COLECO ADAM

You can see how your program is now stored in the computer by
typing
list |
The computer will display all the statements it has stored:

10 PRINT “Hello”
20 PRINT “Hello Again”

Each statement is stored as a unit. The computer stores and lists state-
ments in the order of their statement numbers, regardless of the order
in which you typed them.

The computer displays the command words in all-capitals when it
lists the program. Even when you type commands in lowercase, the
program listings show them as uppercase. The Adam does this to fol-
low the convention used by most other computers, which type all pro-
gram lines in capital letters.

These capital letters introduce an unfortunate inconsistency
between your typed program lines and the computer’s program list-
ings. As I explained in Chapter 5, you will find it easier to type your
commands in lowercase, so that you don’t have to press the LOCK
key constantly when typing numbers. But the computer will change
these to capitals in its listings. You will simply need to get used to
reading the lines both ways.

In this book, I will continue to use lowercase letters for lines that
you type on the keyboard, since that is the way you will type your
commands. On program listings, I will reproduce the computer’s cap-
ital letters exactly as they appear on the screen.

You now have two program lines in your computer’s memory.
When you give the RUN command, the computer will search
through its memory and follow the stored commands in numerical
sequence. Then it will drop down and show the bracket prompt once
again. The results will look like this:

Hello
Hello Again

]

You can add statements anywhere in your program. Suppose you
wanted a message to appear between the two lines you have already
printed. You can simply type a command whose statement number

WRITING A PROGRAM

is between 10 and 20. The computer will file the new command in the
proper place. You could, for example, type:

15 print “Goodbye"

If you LIST the program, you will see that the new statement has
been placed between the other two:

10 PRINT “Hello”
15 PRINT “Goodbye"
20 PRINT “Hello Again”

RUN the program. The three commands will be carried out in the
order of their statement numbers:

Hello
Goodbye
Hello Again

You can choose any number from 0 to 65535 for your statement
numbers. You would do best, however, to use multiples of ten (10, 20,
30, etc.). This system gives an ordered appearance to your program
and leaves plenty of room for insertions.

To delete a line, just type the statement number followed by nothing.
Suppose you want to eliminate the last line, “Hello Again.” Just type

20

and press RETURN. The statement numbered 20 will be erased
from the computer’s memory, as you can tell by listing the program:

10 PRINT "Hello"
15 PRINT “Goodbye"

If you now run the program, the computer will use only the state-
ments that remain:

Hello
Goodbye

If you want to change a line, type the new version with the old state-
ment number:

10 print “Hello There"”

When you press RETURN, this new line will replace the earlier

103

104

THE EASY GUIDE TO YOUR COLECO ADAM

statement number 10. When you now LIST your program it will look
like this:

10 PRINT “Hello There"”
15 PRINT “Goodbye"

Remember that you can use each statement number only once. If you
duplicate a number, your new statement will replace the previous one.

If you want to make only a minor change in a line of your program,
you can edit the line on the screen. The Adam’s editing commands are
rather clumsy, so you may often find it easier simply to retype the line,
but for long statements, you may prefer to use these commands.

As we saw in Chapter 5, you can change and reuse lines that you
have already typed. Move the cursor to the line by using the up arrow
on the keyboard. Then use the right arrow to position the cursor
under the letter you want to change. Type your correction over the
old letter, then finish the line. If you are replacing only one letter, you
can use the right arrow again to reach the end of the line without
changing the letters beyond your correction. If you are adding or
removing a character, you will need to type the remainder of the line.
When you reach the end of the line, press the RETURN key to enter
the new version into the computer’s memory.

After making a correction in a line, you must either retype the
remainder of the line or use the right arrow to run the cursor past
every letter you want to save. If you press the RETURN key before
you have run the cursor past the remainder of the line, the computer
will erase those remaining characters, even though they appeared to
be part of the line on the screen.

You can edit only statements that are displayed on the screen. If
you want to change a line that is not currently displayed, you could
LIST the entire program, but it is simpler to display just the line you
want to change. You can LIST a particular line with a command such

as this:
list 15

With this version of the LIST command, only line 15 will be displayed:
15 PRINT "Goodbye”

Suppose you want to insert an exclamation point after the word
Goodbye. Use the arrow keys to move the flashing cursor under

WRITING A PROGRAM

the second quotation mark, like this:

15 PRINT “Goodbye’’
Then type the exclamation point: it will replace the closing quotation
mark on the screen. Since the closing mark is now missing, you must
type another quotation mark to finish the line.

To store the corrected line in the computer’s memory, press the
RETURN key. The corrected line will replace the previous version
and become part of the program. The computer will make the
replacement whether you retyped the entire line or simply changed
one character and ran the cursor past the rest. Type a LIST com-
mand to make sure your change has been incorporated:

10 PRINT "Hello There”
15 PRINT “Goodbye!”

Don’t worry if you find these editing commands difficult to use.
The Adam’s BASIC editor is so clumsy that many people prefer to
retype lines rather than edit them. Also, if you want to make quite a
number of changes in a long program, you can store it as a file on a
cassette tape, then make your changes using the Adam’s word pro-
cessor. More on this technique later in this chapter.

Let’s quickly review the different ways you can use statement num-
bers as you type your program:

* Add. 1f you enter a line with a statement number that you
haven’t used before, it will be stored as a new line of your
program.

* Insert. If you type a line with a statement number that lies
between two numbers already stored, the line will be
inserted between these two lines in the program.

* Replace. If you enter a line with a statement number that you
have already used, your new version will replace the old.

* Delete. If you enter a statement number with no command
following it, any statement stored under that number will be
eliminated.

You now know everything you’ll need to type programs into the
computer. You know how to add, insert, replace, and delete program
lines. You know how to list your program, and how to run it.

It is time for a practical example.

105

106

THE EASY GUIDE TO YOUR COLECO ADAM

THE BOX-DRAWING PROGRAM

At the end of Chapter 6, you typed a sequence of high-resolution
graphics commands to draw a box on the screen. To review, try the
same series again:

hgr

hcolor = 8

hplot 20,20 to 140,20
hplot to 140,140
hplot to 20,140

hplot to 20,20

The computer will shift into the four-color graphics mode and pro-
duce a picture that resembles Figure 6.6 on page 96.

We're going to write a new program, so type
text
to return to the text mode. Then type
new

to clear the computer’s memory. Remember: a program line remains
in the memory until you delete it, clear the slate with a NEW com-
mand, or turn the computer off.

Now we're ready to retype the six commands, but this time we’ll
give them numbers and store them as a program. Type these lines:

10 hgr

20 hcolor = 8

30 hplot 20,20 to 140,20
40 hplot to 140,140

50 hplot to 20,140

60 hplot to 20,20

When you’re done, check your typing. If you made a mistake, retype
the line or correct it with your editing keys.

Now run the program. Almost instantly, your computer will shift to
the graphics screen and draw an orange box. The result is the same as
Figure 6.6, but the computer did it all in one step, rather than six.

Several advantages of stored programs now become evident. You
can correct a mistake by editing a line, rather than retyping the entire

WRITING A PROGRAM

procedure. i’ou can redraw the box with a single RUN command,
rather than retyping all six steps. As we go on, you will discover other
advantages and other uses for programs.

HINTS ON WRITING PROCRAMS

As you write your own programs, you should develop habits that
will make your work easier. Clear thinking and good organization are
often the difference between successful programming and computer
nightmares. Here are three rules to follow:

1. Think the task through. You will save yourself a lot of agony if you
spend a few minutes planning your program before you start typing
it. You don’t actually have to write out the program unless you feel
the need, but you should sketch the general route before you start.

2. Be neat. There is nothing more frustrating than trying to make
corrections in a sloppy program. If you organize your program so
that it is easy to read and logical, you will be able to follow it more
easily when you go back to change it. Use a regular pattern in your
statement numbers, such as 10, 20, 30.

3. Leave notes to yourself. There is a special command that lets you
place comments in your program. You simply start a line with the
keyword REM (for ‘‘remark’), and the computer will ignore any-
thing you type on the rest of the line.

To place a comment in your program, type a new statement num-
ber, the keyword REM, and your comment. For example, at the
beginning of the box-drawing program you could add a comment to
give a title to the program. Try the following:

5 rem Box-Drawing Program

When you LIST the program, this remark will appear first, since 5 is
the smallest statement number in the program. When you run the
program, however, the computer will ignore the remark.

Don'’t rush to dismiss REM statements as a waste of time. Even if
you are writing programs only for yourself, the remarks will remind
you of your programming intentions and procedures if you later
decide to revise it or reuse a program. Also, if you give your program
to a friend, the remarks will explain what you have done.

Figure 7.1 shows how remarks can be used to clarify the box-
drawing program. Two remarks that contain rows of asterisks set off

107

108

THE EASY GUIDE TO YOUR COLECO ADAM

the title of the program. Blank remarks in lines 8, 24, and 34 are sepa-
rate the program into its major parts, and remarks in lines 9, 25, and
35 name the parts. Line 19 explains the color code in the HCOLOR
statement that follows, so that someone reading the program doesn’t
have to refer to the code list. You may not want to include so many
remarks in your own programs, but you should use at least a few.

DEBUGGING

No matter how carefully you write your programs, you will have
troubles from time to time. Your program won’t work exactly as
planned, or you will get an error message when you run it. This is
known as a bug in your program, and you are faced with the task
of debugging.

What do you do when you get an error message? Suppose you are
trying to run the box-drawing program, but the computer stops with
the message

?lllegal Quantity Error In 50

The computer got part of the way through the program, but couldn’t
complete statement 50 for some reason. The error message suggests
the problem: the computer encountered an “‘Illegal Quantity”—a
number too large for the way it is used in the command; for example,
a coordinate too large for the graphics screen.

& REM e e e o ol o e e e ke ok o i e
5 REM Box-Drawing Program
6 REM adwiwdmdhhdhnddhnhid
8 REM

9 REM Hi-Res Graphics

10 HGR

19 REM Choose Orange

20 HCOLOR = 8

24 REM

25 REM Draw Top of Box

30 HPLOT 20,20 TO 140,20
34 REM

35 REM Draw Other 3 Sides
40 HPLOT TO 140,140

50 HPLOT TO 20,140

60 HPLOT TO 20,20

Figure 7.1: Use remarks to make your programs more readable.

WRITING A PROGRAM

Now that you know what the error is, LIST the program and check
it over. In this case, the error is probably in line 50, but you should
look at the other statements as well. Often a mistake in an early line
will cause problems in a perfectly good statement later in the program.

Check the program, line by line. Pay particular attention to details;
a missing comma or a misspelled word can block an entire program.

Make sure that no lines are missing. It is easy to leave out a com-
mand as you are typing, or to erase one by typing the wrong state-
ment number. Make sure also that no unwanted lines have slipped
into your program. For example, you might have forgotten to give a
NEW command before you started typing.

If you still can’t find your mistake, have a friend check your pro-
gram. Often another person will be able to spot a small mistake that
you missed. Try explaining your program to someone else. In doing
50, you may uncover a gap in your reasoning.

After you have checked and rechecked, you may be tempted to
blame the computer. Don’t—unless it starts behaving erratically on a
variety of programs, or on programs that you've already tested. If
your machine is defective, the problems will usually be obvious and
will affect the computer’s overall functioning, rather than just a single
program. Check with your dealer if you feel that your machine has
gone bad.

Have courage. It can be very difficult to debug a program, so you
mustn’t become frustrated. Often when you do find the bug, it will
seem like a silly mistake, but you shouldn’t blame yourself for having
overlooked it. This happens to everyone.

CASSETTE STORAGE ——

You can store only one program at a time in your computer’s
memory. If you wish to use a different program, you must erase the

first by typing
new

Your program will also be erased when you turn the power off.

If you write a program that you want to use over and over, you will
want a more permanent form of storage. With a few simple com-
mands, you can store programs with the Adam’s built-in cassette

109

110

THE EASY GUIDE TO YOUR COLECO ADAM

drive, described in Chapter 4. You can save your program on a tape,
turn the computer off, and load the program back in whenever you
want to use it again. In this way, you can keep a complicated program
permanently available.

Read Chapter 4 of this book, if you haven’t already done so. That
chapter presents the background information you should have before
you use your Adam’s cassettes. It also includes some essential precau-
tions about handling cassettes.

To save a program, you will need a blank cassette. You cannot use
just any regular blank cassette, though, since the Adam’s cassette drive
needs a tape that has been coded with special magnetic markings. One
blank ‘‘digital data pack” comes with your Adam, and you can buy
others from your dealer. Don’t use your BASIC tape to store programs!

You can save many different programs on a single cassette. The
computer will keep track of all the files stored on the cassette, so that
you can later call a particular program back when you need it.

When you save a program, you must always give it a file name, so
that the computer can locate it when you want to retrieve it. As
described in Chapter 4, you can choose any name of up to 10 charac-
ters, as long as it begins with a letter. Capital letters are significant in
file names: name, Name, and NAME are treated as different files.
Don’t type a file name longer than 10 letters—you might ruin your
cassette.

As a reminder to yourself, choose a name that explains the file’s
contents. Use distinctive names, so that you won’t repeat them by
accident,

Suppose you want to store the box-drawing program that we wrote
earlier in this chapter. If you still have the program in your com-
puter’s memory, you can store it immediately. If you've turned the
power off or done something else since you used the program, you’ll
need to retype it.

To store a program, type the command word SAVE and then the
file name you want to give to the program. Let’s choose the name
‘box.” The SAVE command would then be:

save box

When you press the RETURN key, the cassette drive will spin for a
time, then rewind and stop. The bracket prompt returns to the screen
to show that your program has been stored and that you can go on

WRITING A PROGRAM

with other commands. With your program safely on tape, you can
erase it from the computer’s memory or turn the computer off.

When you later want to retrieve the program, use the LOAD com-
mand. Type

load box

and press RETURN. The recorder will spin and the computer will
load the program back into its memory. When it has finished, the
recorder will stop, and the computer will type the bracket prompt. You
can now LIST the program to make sure it was loaded correctly, then
you can RUN it again. The computer will draw the box, just as before.

When you load a program it replaces any program previously
stored in the computer’s memory. The computer clears the old pro-
gram so that leftover lines won’t interfere with the program it is load-
ing. If you have been working on something important, you should
save it before you load something else.

You can also load and run a program from a cassette in a single
step. To do this, type a RUN command and add the name of the cas-
sette file:

run box

The cassette will spin, and the program will start as soon as the tape
has finished loading.

As with the Adam’s word processor, you can look at a directory of all
the files stored on a cassette tape. In BASIC, you do this with the
CATALOG command. Simply type

catalog

and press RETURN. The computer will list the names of each of the
programs and files on the tape. If the box-drawing program is the
only thing you have stored on your blank cassette, the directory will
look something like this:

Volume: FIRST DIR
A 1 box

251 Blocks Free

The exact appearance of this listing may vary with different cassettes,
but the general scheme remains the same.

111

112

THE EASY GUIDE TO YOUR COLECO ADAM

The first line of the catalog isn’t too important. FIRST DIR is
simply the name that Coleco gave to the blank cassette when it was
prepared in the factory.

Beneath this opening line is the name of the file that you stored:
box. The letter A at the left is merely a code for a stored BASIC pro-
gram. The number 1 tells you how much space the program occupies
on the tape. Coleco’s cassettes are broken into blocks, each of which
contains about a thousand characters of information. Since the box
program is quite short, storage requires only one block. Beneath the
directory, the computer shows you much space is left on the cassette.
A blank cassette will usually start with 252 blocks free.

If you have many files stored on a cassette, the directory might fill
up the entire screen and even roll some of the names off the top. You
can stop the movement of the list by pressing CONTROL and the
letter S. Proceed like this: Give the CATALOG command as usual.
Then hold down the CONTROL key and press the letter S as the
listing appears on the screen. The listing will stop so that you can read
it. When you’re ready to go on, press CONTROL-S again and the
listing will continue to the end.

If you ask the computer to save a program with the same name as a
file already on the cassette, it will keep the old file as a backup copy.
That way, if you accidentally store a program with the wrong name or
if the new file becomes damaged, you can go retrieve the backup ver-
sion. To see how this works, type

save box
once again. Then give another CATALOG command. The new
directory will read:

Volume: FIRST DIR

a 1 box
A 1 box

250 Blocks Free

There are now two programs on the cassette, both with the name
‘box.’

The lowercase a in the left column identifies a backup file. The most
recent file is always the one preceded by the capital 4, and that is the
version the computer retrieves when you type a LOAD command.

If you want to retrieve a backup file instead of the newest file,

WRITING A FROGRAM

you must use the special RESTORE command. You type this new
command in the same way as the LOAD command.

restore box

This command loads the backup version of the ‘box’ file and uses it to
replace the most recent file on the tape. The most recent version is
lost when you restore the backup.

You can also restore the backup file with the Adam’s word pro-
cessor. Pull the RESET COMPUTER switch and press ESCAPE/
WP to return to the word processor. Then use the GET function to
retrieve the file from the backup directory, as described on page 59 in
Chapter 4. You can then store the file under another name and return
to BASIC to use it. This procedure is a little more complicated, but it
is safer since it does not delete any files from the tape.

If you have a very important program or a long one that would
take hours to retype, you might want to keep another copy on a sec-
ond tape. Put a new blank cassette in the drive and type another
SAVE command. The computer will store the program on this second
tape. If anything ever happens to your original tape, you can load the
program from the second.

The Adam’s BASIC also has two commands that let you
RENAME and DELETE files on the tape. With the RENAME com-
mand, you simply give the file a new name, without changing its con-
tents. You could, for example, type

rename box, newbox

If you now give a CATALOG command, the program formerly
named ‘box’ will be listed under the name ‘newbox’. That is the
name you would use for the file in all future LOAD commands.

To erase a file from the tape, just type the DELETE command
word and the name of the file. Suppose you want to erase the file
which you just renamed ‘newbox’. You would type

delete newbox

The file will be erased from the tape, and you can use the space for
other storage. Be careful when using the DELETE command! Once you
have erased a file from the tape, there is no way to recover it.

What can you do if one of your tapes goes bad and cannot be read?
First check Chapter 4 of this book to make sure you're using the tape

113

114

THE EASY GUIDE TO YOUR COLECO ADAM

correctly: it would be a shame to give up on a tape simply because
you were doing something wrong.

If the tape is physically damaged, there’s not much you can do.
Even if you could repair it and make it readable, you could never be
sure that the tape wouldn’t fail again.

Sometimes, however, the tape itself is undamaged, but its file direc-
tory has somehow been erased. In this case, you can remnitialize the
tape so that it can once again be used. This procedure will, however,
erase the information stored on the tape, so you should reinitialize a
tape only if you know you won’t be able to use it any other way. If the
reinitializing works, you will end up with a blank tape.

Before you do this procedure, give a CATALOG command. Does
the computer display the cassette’s file directory? If so, you can still
use the tape, and you should not reinitialize it.

However, if the computer always responds with an error when you
ask for the directory, you cannot hurt anything by reinitializing. Don’t
run this procedure on a valuable program by mistake: make sure you
are willing to erase the tape. Then type a command such as this:

init Tapename

“Tapename’ can be any name you want to give to the tape, up to 10
letters long. When you press RETURN, the computer will write a
new, empty directory on the cassette, erasing the directory that you
were using. All references to files on the tape will be erased, so that
you can once again use the tape for data storage.

If you have had a second cassette drive installed in your Adam, you
can use it just like the first one. You simply refer to it by the name d2.
You can save, load, and run programs on this drive by typing d2 after
the file name:

save filename, d2
load filename, d2

and
run filename, d2

To see the directory of files on the second data pack, type d2 at the
end of your CATALOG command:

catalog, d2

WRITING A PROGRAM

USING THE PRINTER

By storing your programs on cassette tapes, you can preserve them
for future use. Sometimes, however, you also want a written record of
your work. A printout is an added safeguard against cassette failures,
and it offers a clear record of what you have done.

There are two ways you can use your Adam’s printer to record
your work. The simpler is to have the printer make an exact copy of
everything that appears on the screen. To obtain this screen dump, hold
down the CONTROL key and press the letter P. The printer will
immediately reproduce every letter on the screen, as accurately as it
can. You might want to have the computer list a program or display
your results on the screen, then make a printed copy with this
CONTROL-P key. This feature works only in the text mode: you
cannot print graphics.

If you want to list a longer program, you can use the command
PR#1, which tells the computer to display the results of all commands
on the printer as well. Type the following symbols:

pr#i
Now type
list

The printer will type out an entire copy of your program. As it prints,
the program will also be displayed on the screen.

Once you have given the PR#1 command, the printer will continue
to print anything that would normally be displayed on the screen. If

you type:
print “Hello"

The printer will type the word Hello on the page. Or try:
catalog

The printer will produce a listing of the cassette’s file directory.
To undo the PR#1 command and have the printer stop mimicking
the screen, type

pr#0

115

116

THE EASY GUIDE TO YOUR COLECO ADAM

If you simply want a printed listing of a program, you can combine
the three necessary commands on one line:

pri#l: list: pr#0

The computer will turn on the pr'mtér, print the program, and turn
off the printer, all in one step.

OPTIONAL EXERCISES

1. Add a statement to the box-drawing program on page 106
so that the left edge of the box will be blue. You will have to
choose a statement number between 50 and 60.

2. Add a line to the end of the same program that will draw a
diagonal line from the upper-left corner of the square to the

lower right.
3. The following program listing contains four mistakes; find
the bugs.
10 PRNIT “Hello There"
20 HGR
30 COLOR = 1

40 HPLOT 10,734
50 HPLOTO0,0TO 10

SUMMARY

In this chapter, you have learned how to assemble commands to
form a program. You can store as many commands as you like in the
computer’s memory, and run them all as a group. You can use the
LIST command to review or change the program you have stored.

Programs have many uses, as you have already seen. Since they
can be revised and reused, programs allow you to undertake compli-
cated operations without having to retype the commands each time.
With the Adam’s cassette recorder and printer, you can save your
programs permanently and keep a written record of your work.

In the next two chapters of this book, you will learn new techniques to
increase your control over your computer and discover its true power.

Chapter

Using
Variables

In the last three chapters, you have been giving very specific instruc-
tions to your computer. You have told it to print a message or to plot a
point at a certain pair of coordinates. To print a different message or
plot a different point, you have had to type a whole new command.

By using variables, you can make your commands more flexible.
Instead of typing the actual number that you want to use in each com-
mand, you can use a name that will stand for any number you choose.

This general name is called a variable, because it can take on
different values in the course of a program. You start by storing one
number under the name. Later, you can change the number and get
a different result from your program. This makes it convenient to use
your computer for repetitive calculations.

At the end of this chapter, you will learn how you can make vari-
ables represent letters as well as numbers, so that you can manipulate
words too.

In this chapter, we will try out several variations on the program
that draws a box on the screen. The idea will remain the same as the
program we developed in Chapter 7; however, we will use variables to
stand for the coordinates, so that we can change the shape and loca-
tion of the box more easily.

STORING NUMBERS

In most of our commands, we have used one or more numbers to
tell the computer what we wanted, To plot a point, for instance, we
used a pair of numbers to refer to its coordinates.

118

THE EASY GUIDE TO YOUR COLECO ADAM

So far, we have been using specific numbers whose values never
change. When you type a number such as 5 or 46, the computer uses
it directly. These are called fixed numbers, because nothing inside the
program can change their values.

Variables are an alternative to fixed numbers. Instead of typing the
exact value of the number that you want to use in a command, you
can give the number a vanable name—a general label that can stand in
its place.

A variable is like a storage box in the computer’s memory. You store
a number in the box. From that point on, the computer will use the
stored number in any statement where it finds the variable name. You
can use the variable name in any place where you normally would
have used the fixed value.

The advantage is that you can change the value of the variable
merely by storing a different number in the box. When you do this,
the first number is discarded and the second replaces it. After that,
the variable will stand for the new number. You can change the value
as often as you wish.

Let’s say, just for fun, that you wanted to use ‘Fred’ as a variable
name. You would start by giving it a value: the number 7, for
instance. You simply type:

Fred = 7

When you press RETURN, your computer sets aside a place in its
memory for the variable. It then stores the number 7 in that place, so
that you can refer to it by the name you have given.

This statement is really not an equation, though it looks like one.
The computer interprets the equal sign as a command to take the
value on the right of the sign and store it under the variable name on
the left. This is called an assignment statement.

You cannot turn the equation around, as you can in normal
arithmetic. If you type

7 = Fred

you are saying, ‘“Take the number Fred and store it under the name

7.” This makes no sense to the computer, and you will get an error.
Now that you have stored the value, the name Fred represents the

number 7. You can see this by asking the computer to print the value:

print Fred

USING VARIABLES

When you do this, the computer will display the number 7. (If it
displays 0 or something else, you have probably mistyped something:
try assigning the value again.)

From now on, you can use the name Fred wherever you would
normally use the number 7. You could plot the point 7,7 in the low-
resolution graphics mode by typing

plot Fred,Fred

You could even store the number 7 in another variable named Jane
by setting Jane equal to Fred:

Jane = Fred
Let’s look a little more carefully at the command
print Fred

When you pressed RETURN, the computer displayed the value you
had assigned to the name Fred. Notice that this command is very
different from

print “Fred"”

With the quotes, the computer reads ‘“Fred’” as a message to be dis-
played. It therefore types the word Fred, rather than the number 7.
Without the quotes, the computer understands Fred to be the name of
a variable and displays its stored value.

You can change the value of a variable merely by storing a different
number under its name. To change Fred’s value to 19, for example,
you could type

Fred = 19

The old value (7) will be lost, and from now on the variable will rep-
resent 19. You can check this by giving the command

print Fred

Fred will continue to mean 19 until you give it another value or turn
the computer off.

Until you store a number in a variable, the computer assumes that
its value is 0. We have not assigned a value to the name Irving. If you
give the command

print Irving

119

120

THE EASY GUIDE TO YOUR COLECO ADAM

The computer will respond with the number 0, since you have not
stored any other value.

So far, we have been using people’s names, like Fred, Jane, and
Irving. It is generally best, however, to use a name that describes
what the variable represents. If you have a variable that counts the
number of times you have done an operation, you might call it
Counter. For graphics, you might want to call the coordinates of a
point x and y, so that you can simply type

plot x,y

When plotting more than one point at a time, you can give your coor-
dinates different names all starting with x and y. For example, if you
were drawing a line from one point to another, you might call the
starting coordinates xstart, ystari and the ending coordinates xend, yend.

As with command words, it doesn’t matter whether you capitalize
letters in the name: FRED, Fred, and fred are all the same to the
Adam. As before, it is usually easiest to type all of your commands in
lowercase letters, so that you don’t have to keep pressing the SHIFT
and LOCK keys.

When you LIST a program, the Adam displays all variable names
in lowercase, even if you typed the name in capitals. This is rather
confusing, since it changes other items into capitals when it lists a pro-
gram. This can make program listings somewhat confusing and
unsightly, and it differs from the system used with other machines, in
which all words are capitalized. For consistency, the program listings
in this book follow the Adam’s conventions for capital and lowercase
letters, but you should expect to see words capitalized when you read
other books and magazines.

There are a few restrictions on the names you can choose for your
variables. The name can be as long as you wish, but it must begin
with a letter. The rest of the name may contain numbers, but no spe-
cial symbols. Finally, you may not start your variable name with a
BASIC command word, such as PRINT or PLOT: the computer
would have no way to tell the difference between your variable name
and the command. Within these guidelines, you can use any name
you like,

From these experiments with stored values, you have seen how to
store a number in any variable you choose and then use the variable’s

USING VARIABLES

name instead of the number. If you want to change the variable’s
value, you merely assign a new one. The variable will then represent
the new value until you change it again.

VARIABLES IN PROGRAMS

When you'’re just typing simple commands, variables aren’t all that
useful. As long as you are typing each command as you go, you
might as well use fixed numbers.

In programs, however, variables are helpful. You can write a gen-
eral procedure for accomplishing a certain task and use variables
rather than specific numbers. Then, when you run the program, you
can plug in the specific numbers you want. To perform the same task
with different numbers, you don’t have to retype the program—you
simply plug in new values.

To see how this works, let’s return to the box-drawing program
that we developed in Chapters 6 and 7. To start, give the command

new

Then type the program back into the computer’s memory, exactly as
shown:

5 rem Box-Drawing Program
10 hgr
20 hcolor = 8
100 hplot 20,20 to 140,20
110 hplot to 140,140
120 hplot to 20,140
130 hplot to 20,20

This program is the same as the one shown in Figure 7.1, except that
some of the remarks are omitted and the statement numbers have
been changed in the second half to make room for some new state-
ments between numbers 20 and 100.

In every version of this program that we have used, our box has
always been the same size, and it has always been in the same loca-
tion. We always started the box at the coordinates 20,20 near the
upper-left corner of the screen, and drew each edge to a fixed point.
Figure 8.1 shows the fixed coordinates of each corner of the box.

121

122

THE EASY GUIDE TO YOUR COLECO ADAM

USING VARIABLES

20,20 140,20

20,140 140,140

xleft,ytop xright,ytop

xleft,ybottom xright,ybottom

Figure 8.1: Using fixed coordinates, we always produce the same box.

We can now make our program more general so that we can draw
a box of any size, shape, or location. Instead of using fixed coordi-
nates for the corners, we can use variables.

Figure 8.2 shows the names we’ll be using for each of the points.
These names were chosen to explain the numbers they will represent.
The variable xleft, for example, gives the x-coordinate of the left side
of the box. Note that each of the variables is used in the names of two
different corners: xleft is the x-coordinate of both the upper-left and
lower-left corners.

Let’s begin changing the program by replacing the fixed numbers
with variables. Instead of giving another NEW command and retyp-
ing everything, just type the lines that you want to add. As you may
recall, when you type an additional line while you have a program
stored in the memory, the new line will be inserted into the program.
If its statement number matches one already in the program, the old
statement will be replaced. In this way we will be able to change cer-
tain parts of the program without retyping the whole thing.

There are times in this chapter when you will run a program that
will leave the screen in the graphics mode. You can type commands
in the text window at the bottom of the screen, but you will usually
find it easier to return to the text mode. You can do this by typing

text

Figure 8.2: We will give these variable names to the coordinates of the
corners of the box,

Before we can use the four variables to draw the box, we need to
store their values. Let’s start with the coordinates we’ve been using all
along. Insert the following four lines into your program:

30 xleft = 20
40 xright = 140
50 ytop = 20

60 ybottom = 140

Now that we have the values stored, we can retype the HPLOT
statements using the variables instead of fixed numbers. Type four
lines as follows:

100 hplot xleft,ytop to xright,ytop
110 hplot to xright,ybottom

120 hplot to xleft,ybottom

130 hplot to xleft,ytop

These lines will replace the HPLOT statements in the original program.

LIST the program to make sure that all your new statements have
been stored correctly. Check particularly the lines you have just
added, to make sure they are accurate. The program should exactly
match the listing shown in Figure 8.3.

123

124

THE EASY GUIDE TO YOUR COLECO ADAM

When you're sure you have it right, run the program. You should
get exactly the same result as with the original version: an orange box
on the left half of the screen. This familiar box appears because the
values we assigned the variables in the HPLOT statements were the
same as the fixed coordinates in the original version.

With the revised version of the program, however, we can alter the
shape of the box by changing the values of the variables. Replace
statements 30 through 60 with the following:

30 xleft = 10
40 xright = 250
50 ytop = 70

60 ybottom = 80

Now LIST the program. You will see that the new statements 30
through 60 have replaced the old. When you run the program, these
new values produce a thin horizontal rectangle across the screen, as
shown in Figure 8.4. By choosing other values for these four vari-
ables, you can produce rectangles of any dimensions. Type and run
these two other combinations:

30 «xleft = 130 30 xleft=0

40 xright = 140 40 xright = 255
50 ytop = 10 50 ytop =0

60 ybottom = 150 60 ybottom = 158

The values on the left will produce a thin vertical box, while the values

at the right will draw a rectangle around the entire graphics screen.
Try out some values of your own in this program. You can assign

any values to the variables that you want, as long as you don’t exceed

5 REM Box-Drawing Program
10 HGR

20 HCOLOR = 8

30 xleft = 20

40 xright = 140

50 ytop = 20

60 ybottom = 140
100 HPLOT xleft,ytop TO xright,ytop
110 HPLOT TO xright,ybottom
120 HPLOT TO xleft,ybottom
130 HPLOT TO xleft,ytop

Figure 8.3: The revised version of the box-drawing program

THE READ AN

LS

DATA

126

THE EASY GUIDE TO YOUR COLECO ADAM

statement where you stored it. This is all right if you rarely make
changes, or if they only involve one variable. But you frequently
need to change many values in a program, you can assign new values
to several variables in a single statement. You do this with two
new commands: READ and DATA.

The READ and DATA statements always work as a pair, and you
cannot use one without the other. In the READ statement, you give the
computer a list of variables to which you wish to assign values. You
then type a DATA statement with a corresponding list of the values that
you want to store. The computer takes the first value from the list in
the DATA statement and assigns it to the first variable in the READ
statement. Then it returns to the DATA statement and stores the sec-
ond value in the second variable in the READ statement. This process
continues until all the variables are filled. You must have at least
enough values in the DATA statement to fill all the variables in the
READ statement. If you don’t, you will get an error message.

To see how this works, let’s revise lines 20 through 60 of the box-
writing program by using READ and DATA statements. Type the
following lines:

30 read xleft,xright,ytop, ybottom
40 data 20,140,20,140

Now type two blank statement lines, to delete unwanted statements
left over from the previous version:

50
60

LIST the program: it should match Figure 8.5. When you run the
program, you will get the same results as before—a large orange box
on the left half of the screen.

When the computer comes to the READ statement, it plugs the
first number from the DATA statement (20) into the first variable
(xleft). It then continues, with the other variables, reading 140 into
xright, 20 into ytop, and 140 into ybottom. These two lines, there-
fore, have the same effect as the four lines we replaced:

30 xleft = 20

40 «xright = 140
50 ytop = 20

60 ybottom = 140

USING VARIABLES

5 REM Box-Drawing Program
10 HGR
20 HCoLOR = 8
30 REAP xleft,xright,ytop,ybottom
40 DATA 20,140,20,140
100 HPLOT xleft,ytop TO xright,ytop
110 WPLOT TO xright,ybottom
120 HPLOT TO xleft,ybottom
150 HPLOT TO xleft,ytop

Figure 8.5: The box-drawing program, using READ and DATA staterments.

The READ and DATA statemnents, however, are easier to type and to
understand.

The great advantage of READ and DATA statements is that you
can easily assign new values. If you want to draw a thin horizontal box,
as in Figure 8.4, you need to type only one new DATA statement:

40 data 10,250,70,80

When the computer draws the box, the corners are set by the new
values.

You can experiment with many different numbers in this DATA
statement. In the previous version, you had to replace four lines, but
here you need to retype only the one DATA statement. Try these sets
of values:

40 data 130,140,10,150

and

40 data 0,255,0,158

You should get yellow rectangles of other shapes, just as you did on
page 124 . Try some other values of your own.

THE INPUT STATEMENTS

There is a third way to assign numbers to variables, and it is even
more flexible than the READ statement. With an INPUT statement,
you can have the computer pause in the middle of the program and ask
you to type a value on the keyboard. This frees you from having to

127

128

THE EASY GUIDE TO YOUR COLECO ADAM

specify the numbers as you are writing the program. Instead, you can
supply the values when you run the program. You can run the same
program with different values merely by giving different responses.
To have the computer pause to ask you for the value of the first
variable, xleft, you could type this line into the box-drawing program:

30 input xleft

When you ask the computer to run the program, it will stop when it
comes to this statement and put a question mark on the screen. This
is a prompt to show that the computer is waiting for you to supply
some information.

You can add a message to your INPUT statements, so you will
immediately know which piece of information the computer is waiting
for. If you type a message in quotation marks before the variable
name in the INPUT statement, the computer will display that mes-
sage instead of the question mark when it asks for the value. You
must separate the message from the variable with a semicolon (;), just
as you separated the messages in the PRINT statements back in
Chapter 6. I'd suggest you use a brief message such as this:

30 input “Left Edge? " xleft

The space to the right of the question mark will visually separate the
question from your response on the screen. If you run a program with
this statement, the computer will pause and type the following message:

Left Edge?

This tells you which value the computer is expecting you to supply.

To see the INPUT statement in action, let’s make yet another revi-
sion of our box-drawing program. Type the following lines, including
the extra spaces after the question marks:

30 input “Left Edge? "; xleft
40 input "Right Edge? "; xright
50 input "Top? " ytop

60 input “Bottom? ybottom

The extra spaces will line up your answers in a neat column, so that
the questions are easier to read. If you LIST the new version of the

USING VARIABLES

program, it should look like Figure 8.6. Note that the variables in this
program are never given explicit values.

When you run this program, it will work a litde differently from the
other versions. The computer first shifts into the high-resolution graph-
ics mode and chooses the color orange, following the instructions in
lines 10 and 20. Then, at statement number 30, it prints the message

Left Edge?

in the text window and stops. This is your cue to type the first
number—ithe coordinate of the left edge of the box (xeft). The com-
puter will wait untl you type a number and press RETURN. It will
then ask for three more numbers to set the coordinates of the other
three edges of the box. Give the same values that we used in the other

examples:

Left Edge? 20
Right Edge? 140
Top? 20
Botiom? 140

When you're typing your values as you run the program, use the
keyboard just as you normally would. You can correct mistakes with
the BACKSPACE key, and type as many digits as you wish. Once
you press the RETURN key, however, the computer stores your
answer in its memory, and you cannot go back. If you rype anything
other than 2 number, the computer will not accept it and will ask you
to reenter the number.

S5 REM Box-Drawing Progras
10 &R
20 WCOLOR = 8
30 INPUT "Left Edge? ";xleft
&0 INPUT "Right Edge? “";xzright
50 INPUT "Top? ";ytep
60 INPUT "Bottom? ";ybottos
100 HPLOT xleft,ytop TO zright,ytop
110 HPLOT TO =xright,ybottom
120 HPLOT 7O xleft,ybottom
130 WPLOT TO xzleft,ytop

Figure 8.6: The box-drawing program, using input from the keyboard

129

130

THE EASY GUIDE TO YOUR COLECO ADAM

After you give your input for the fourth variable, the computer will
draw the box. If you assign the values shown in the preceding ex-
ample, you will get the same box as in Figure 8.1. By naming other
values in response to your program’s questions, you can have the
computer draw any box.

You have accomplished two important things with these INPUT
statements. First, you have developed a program that asks you ques-
tions as it is running. The computer waits for your responses, and
then acts according to your wishes.

More important, though, you now have a program that you can
run over and over again. Each time you use the program it performs
the same general task, but the result depends on the values you sup-
ply. This is an important step: the computer is now using your pro-
gram as a general problem-solver, rather than just a set of fixed
instructions.

DOING CALCULATIONS

You have now used three different methods to store numbers in
variables. When you need to assign a value to a single variable, you
can use a simple equals sign. If you have several values that you want
to store at one time, you might prefer to use the READ and DATA
statements. Finally, if you want to supply the value when you're run-
ning the program, you can use an INPUT statement.

Up to this point, however, we have done very few things with the
numbers once we stored them. We printed them and used them as
coordinates in HPLOT commands, but nothing more.

You can also perform calculations on the numbers you store. Your
computer can add, subtract, multiply, and divide, and can handle
more complex mathematical functions as well. All the functions are
built into the machine: you need only tell it which operations to per-
form. For arithmetic operations, the computer understands the follow-
ing symbols:

+ Addition

— Subtraction

* Multiplication

/ Division

~ Exponent (“Power")

USING VARIABLES

The asterisk (*) is used for multiplication, since the multiplication
sign (x) might be mistaken for the letter x. For division, the slash (/)
is used, because it resembles a fraction bar. All these symbols except
the slash are located along the top row of the keyboard.

If you want the computer to add two numbers, type:

answer = 2+2

Your computer considers this line to be a command. It takes ‘answer’
to be a new variable and looks at the right side of the equals sign for
the value it should assign. In this case, it sees 2 +2, so it calculates the
value: 4. Then, it stores this value for the variable on the left of the
equal sign: the variable ‘answer.” To see that it has indeed been
stored, you can type the command

print answer

Your expressions can be as complicated as you wish, and can con-
tain variable names as well as numbers. You could type any of the fol-
lowing lines:

x = 15+17
pay = wage *hours
area = length » height/2

The last of these examples contains two mathematical operations.
The computer generally calculates from left to right, except that it
gives priority to multiplication and division operations. For example,
if you ask the computer to calculate

number = 3*x4+6/2

The computer will perform the multiplication (3*4) and division (6/2)
first. Then, it will add the answers together (12 plus 3) and store the
result (13).

If you want to override this sequence, or if you simply find this
confusing, you can group operations together with parentheses. You
could, for instance, write the preceding command as follows:

number = (3x4)+(6/2)

You will get the same answer. Note that you would get a different
answer if you grouped the operations differently:

number = ((3*4)+6)/2

131

132

THE EASY GUIDE TO YOUR COLECO ADAM

In this case, the computer will first calculate the multiplication (3#4)
in the innermost set of parentheses, then add the answer (12) to the
number 6, to solve the outer set of grouping parentheses. Only then
will it divide this result by 2 to get the final answer (9). Note that you
can put parentheses within a set of parentheses.

If you find these concepts difficult, don’t worry. I will stick to
simple mathematical operations in this book, so that you won’t get
lost. If you are comfortable with mathematics, you can certainly learn
to write more complicated formulas on your own.

You can use a mathematical expression anywhere you would use a
number or a variable. You could, for instance, type

print 3*5

When you press RETURN), the computer will respond with the
answer, 15. As you recall, this is very different from

print “3*5"

The quotation marks tell the computer to treat 3%5 as a message to be
printed as is, rather than a formula to be calculated.

As an example, let’s write a program that draws a blue triangle on
the screen. (You're getting tired of boxes, aren’t you?) Our goal will
be to write a program that will draw a triangle of a fixed size, then
use a simple calculation to relocate the picture at any point on the
screen.

As always, type

new

before you start. Then type the program shown in Figure 8.7, When
you run this program, the computer will ask you for starting x- and y-
coordinates. The numbers you give will define the point in the upper-
left corner of the triangle. Line 50 plots this point. The rest of the
program draws lines to the two other corners, and back to the starting
point. The result is a triangle, as shown in Figure 8.8.

Run the program again, and give different values for the coordi-
nates. In this program, you can use any x up to 175, and any y up to
98. (If you use larger numbers, some of the calculations will yield coor-
dinates too large for the HPLOT statements.) As you try different
combinations, you will find that the triangle always remains the same

USING VARIABLES

10 HGR

20 HCOLOR = 6: REM Blue

30 INPUT “Starting X? “;x

40 INPUT “"Starting Y? "y

50 HPLOT x,y

60 REM Move 80 Units to Right
70 HPLOT TO x+80,y

80 REM Move Down and to Left
90 HPLOT TO x+40,y+60

100 REM Move Back to Start
110 HPLOT TO x,¥

Figure 8.7: A program to draw a triangle.

size and shape, but is moved to different positions on the graphics
screen. This happens because all the coordinates are calculated rela-
tive to the point in the upper-left corner of the triangle. When you
change that point, the others will change with it.

STRINGS: STORING LETTERS

You can store words and letters in the computer’s memory, just as
you can store numbers. To do this, you need a special kind of vari-
able, called a string variable. This complex subject could easily take up a
chapter of its own. I cannot give it that much attention, but this brief
introduction will help you understand the concept when you come
across it in other books.

To set up a string variable, you must put a dollar sign ($) at the
end of the variable’s name. These are all string variables:

a$

name$
address$
message$

You can store words or letters in the string variable, just as you store
numbers in regular variables. You can use a standard assignment
statement, by enclosing the message in quotes:

10 name$ = “Arthur"

133

THE EASY GUIDE TO YOUR COLECO ADAM

Figure 8.8: The results of the triangle program.

You can use READ and DATA statements:

20 read name$
30 data Arthur

Or, vou can use an INPUT statement:
40 input “Which Name? ", name$
In the last case, the computer will ask “Which Name?’ and you can
type
Arthur

from the keyboard.
When you have stored the message in the string variable, you can
use it in several ways. You can print it:

100 print name$
You can store it in another variable:

110 copy$ = name$

USING VARIABLES

You can even join it to another variable or to itself, by using a plus sign:
120 print name$ + copy$

When a plus sign links two string variables like this, it does not mean
addition. Instead, it tells the computer to run the contents of the two
string variables together one after the other. When you run a program
that includes statements 110 and 120, the computer will print the
name Arthur twice, like this:

ArthurArthur

BASIC gives you a number of string functions that let you slice a
string variable's value into sections. If you just want the first three let-
ters of the variable name$, you can use the LEFT$ function:

200 print left$(name$,3)

You must always put two elements within the parentheses following
LEFTS$: the string variable you want to slice, and the number of let-
ters, starting from the left, that you want to include. When you run
this statement, the result will be:

Art

Likewise, you can ask for the last three letters of the characters strored
in name$, by typing

210 print right$(name$,3)

Finally, you can ask for a series of letters from the middle of the
string. For this, you must supply two numbers. The first names the
starting character, counting from the left. The second gives the num-
ber of characters to be displayed. You might type, for example:

220 print mid$(name$,2,3)

With this, you are asking the computer to begin with the second letter
of the variable name$ and display three characters. When you run the
program, the computer will display:

rth

You can do many things with strings. You can splice strings together,
or pull them apart. You can use them to display messages in special
ways on the screen, or store them for future use. The applications of
string variables are many, but they are a subject for another book.

135

136

THE EASY GUIDE TO YOUR COLECO ADAM

OPTIONAL EXERCISES

1. In the version of the box-drawing program shown in Figure
8.6, add an INPUT statement before line 20, so that you
can choose a color other than orange. You will need to
define a new variable, and will need to modify statement 20.

2. Add statements to the end of the triangle program (Figure
8.7) so that the computer will draw a Star of David. You will
need to add HPLOT statements to draw a second triangle
on top of the first, with the point facing upward.

3. Store the number 10 in the variable ;. Then type the follow-
ing command:

j=j+1

What value will j now have? Check your answer by asking
the computer to

print |

SUMMARY

In this chapter, you have learned how to use variables so that you can
store a number and reuse it later. Variables let you simplify programs,
and allow you to write programs that perform general operations.

The simplest way to store a number is to set the variable name
equal to it. The number will remain stored in that variable until you
replace it or turn the computer off.

If you have many numbers to store, or constantly need to change
the values you are using, you can read the values from a DATA state-
ment. Fach variable in the READ statement is assigned the corres-
ponding value in the DATA statement. To change the values, you
need only change the DATA statement.

The most flexible way to store values is with an INPUT statement.
The computer will stop each time it runs the program and ask you to
type the value at the keyboard. When you press RETURN, the com-
puter stores the value and continues with the program.

You have also seen how your computer can perform calculations.
The arithmetic operations can be simple or complex, and you can eas-
ily print the results.

USING VARIABLES 137

With string variables, you can also store lettering and words. These
let you manipulate messages and print them out in various ways.

We have almost reached the end of our exploration of the Adam’s
BASIC programming language. In the final chapter, you will learn

other commands that make your computer even more flexible.

Chapter

Controlling
Your Program

In the last two chapters, you began to write programs. You can
now type commands into the computer and store them in its memory
as an organized program. With variables, you can make your pro-
grams more flexible, so that they will perform a general task using the
values you supply.

Until now, however, you have been locked into the start-to-finish
flow of the program. The computer began to run the program with
the first statement, then went through each of the others in order.
When it reached the end of the program, the computer stopped and
returned control to the keyboard. It saw each statement only once.

In this chapter, you will learn ways to alter the flow of the program.
You can ask the computer to jump from one part of the program to
another, or to return to statements it has already used. You can also
have the computer do a tedious task many times, or make decisions
based on information you supply. Finally, you will learn how to break
your program up into smaller subroutines, which you can use as build-
ing blocks.

In the programs throughout this chapter, the command words are
capitalized, just as the computer lists them on the screen. Variable
names and some text messages are still printed in lowercase, since the
Adam does not capitalize them. You can continue to type everything
in lowercase, but you should get into the habit of seeing commands in
full capitals, since that is the way they are usually printed in books

and magazines.

140

THE EASY GUIDE TO YOUR COLECO ADAM

GOTO: JUMPING TO ANOTHER STATEMENT —

The simplest form of program control is the GOTO statement,
which tells the computer to jump to another statement in the program
and continue from that point. You might, for example, want the com-
puter to jump straight from statement number 20 to 50, skipping any
statements in between. You could merely make line 20 a GOTO
statement:

20 GOTO 50

When the computer sees this line, it will immediately skip to line 50
and pick up from there. Any lines that fall between 20 and 50 will not
be used, unless another GOTO statement later on sends the computer
back to them.

The most common use of GOTO is to send the computer back to
the beginning of a group of statements. Try the following program:

10 PRINT “Hello”
20 GOTO 10

When you run this, your computer will display a vertical column of
Hellos along the left side of the screen.

The computer first encounters line 10, which tells it to display a
single word, Hello. The computer then moves on to line 20. That,
however, sends it right back to line 10, so it prints the word again.
When it has finished line 10 for the second time, the computer once
more proceeds to the next statement. That is line 20 again, which, of
course, sends it back to 10. The process goes on and on.

The computer doesn’t even stop when it runs out of lines on the
screen. If you look carefully at the Hello on the bottom line, you will
see that it is flickering. The computer is still printing the word Hello
repeatedly, and it keeps moving all the other lines up and off the
screen to make room for it.

If you try to type a letter on the keyboard at this point, the com-
puter will not accept it. The computer is still running your program,
and all its attention is directed toward that task. Until the computer
finishes a program and displays the bracket prompt, you cannot type
any new commands.

This program, however, will never end—it is an infinite loop. The
computer will continue repeating the task until you turn the power off
or do something else to stop it. You could stop the program by pulling

CONTROLLING YOUR PROGRAM

the RESET COMPUTER switch, but then you would need to reload
the BASIC tape and start all over.

CONTROL-C is the best way to stop a program while it is run-
ning. Hold down the CONTROL key along the left side of the key-
board, then press the letter C. The computer will stop in its tracks

and display:
?Break In 10

The bracket prompt and the cursor will reappear to show that you
can type letters again.
If you wish, you can restart the program from wherever you

stopped it, by typing the command
CONT

In most cases, though, you will probably want to use a RUN com-
mand to start over from the beginning.

You can use CONTROL-C to stop almost any program. Use it if
you get stuck in an infinite loop, or if you simply want to cut the
program short. You may need to follow the CONTROL-C
with RETURN, if the program happens to be waiting at an INPUT
statement. (If CONTROL-C doesn’t work, you can always pull
the RESET COMPUTER switch, reload the BASIC tape, and
start again.)

Infinite loops are not necessarily bad. When you want to do a task
over and over, it is often easiest simply to write the program as an
infinite loop and stop it manually when you have had enough.

As an example, let’s write a program that will take any number
you type in, multiply it by 2, and print the result. Type the following
program:

10 PRINT

20 INPUT "Type a Number —— "; n
30 PRINT n;" Times 2 = ";n*2

40 GOTO 10

Line 10 has the computer print a blank line on the screen, to make
the display more readable. Line 20 is an input statement that asks you
to type in a number from the keyboard. The computer waits for your
response, then puts your number in the variable n. Line 30 displays
first the number n, then the phrase “Times 2 = *’, and then the

141

142

THE EASY GUIDE TO YOUR COLECO ADAM

answer that it calculates from, n*2, The GOTO statement sends the
computer back to the beginning of the program to ask you for another
number.

The PRINT statement in line 30 may look a little unfamiliar. Up till
now, we have used only one variable or one message after the word
PRINT. As you may recall from Chapter 6, however, you can use sev-
eral messages in a single PRINT statement. Here we have three: the
variable n, the message *“ Times 2 = ", and the answer n*2. The com-
puter understands this perfectly well, and will display the three items
one after the other. The semicolons (;) separating the items are impor-
tant, since they tell the computer to display the three items on the same
line with no extra spaces in between.

When you run this program, the computer will start by asking you to

Type a Number ——

Type a 3 and press RETURN. The computer will respond with the
answer:

3Times2 = 6

It will then ask you to type another number. You can type numbers
and have the computer double them as many times as you wish.
When you’re done, press CONTROL-C and RETURN to stop the
program.

You can make any program repeat in this way. A good example is
the box-drawing program we developed in Chapter 8. Think about
what would happen if you added the following line to the program in
Figure 8.6:

140 GOTO 30

The new program, shown in Figure 9.1, would run just like the old
one, asking you to supply the coordinates for the corners of the box.
Once you type in four numbers, the computer will immediately draw
an orange box.

With the added GOTO statement, however, the computer won't
stop when it finishes the first box. Instead, it will ask you for a new set
of four numbers. If you type four more coordinates for the corners,
the computer will draw a second box without erasing the first. You
can draw as many boxes as you like. Figure 9.2 shows what your
screen might look like after a few times through the loop.

CONTROLLING YOUR PROGRAM

5 REM Box-Drawing Program

10 HGR

20 HCOLOR = 8

30 INPUT "Left Edge? "“;xleft
40 INPUT "Right Edge? ";xright
50 INPUT "Top? “"iytop

60 INPUT "Bottom? “;ybottom
100 HPLOT xleft,ytop TO xright,ytop
110 HPLOT TO xright,ybottom
120 HPLOT TO xleft,ybottom
130 HPLOT TO xleft,ytop
140 GOTO 30

Figure 9.1: By adding a GOTO statement to the end, you can have the
box-drawing program repeat itself,

If you look carefully at the program listing in Figure 9.1, you will
notice that the added GOTO statement does not send the computer
all the way back to the beginning of the program. We do not want to
repeat the HGR and HCOLOR statements in lines 10 and 20
because the HGR statement would clear the screen each time around
and erase the picture we are building. By jumping to statement 30,
we can repeat only those lines that are necessary.

The GOTO statement is so convenient that many people overuse
it. Programs that jump back and forth too much can be very difficult
to follow, so you should use this statement only when there is a clear
need. People normally expect to read a program from top to bottom,
and too many departures from that order can be confusing.

FOR/NEXT LOOPS

With the GOTO statement, you can make the computer repeat a
part of your program, but your loops must be infinite: the computer
will repeat the program until you press CONTROL-C to make it stop.

Very often, however, you want to have the computer repeat a
group of statements a fixed number of times, then go on to another
part of the program. To do this, you must use two new statements:
FOR and NEXT.

FOR and NEXT statements always come in pairs. The FOR state-
ment precedes the set of lines you want to repeat; the NEXT statement
comes at the end. When the computer comes to the FOR statement,

143

144

THE EASY GUIDE TO YOUR COLECO ADAM

Figure 9.2: The modified box-drawing program lets you draw more than
one box on the screen.

it starts up a counter to keep track of the number of repetitions it has
performed. It then keeps repeating all the statements between the
FOR and the NEXT until it reaches the limit you have set. Then,
when it again reaches the NEXT, it passes through and continues
with the rest of the program.

To see this in action, type the following program:

10 PRINT “The Loop Is Beginning.”
20 FORcntr = 1 TO 10

30 PRINT “Repetition No. ";cntr

40 NEXT cntr

50 PRINT “The Loop Is Finished.”

The messages in this program’s PRINT statements are arbitrary—
chosen for the purposes of explanation. The counter variable is given
the name ‘cntr.’ This is the variable with which the computer keeps
track of the repetitions. When you run the program, your results
should look like Figure 9.3.

The FOR statement in line 20 tells the computer to repeat the loop
a number of times, keeping track with the counter variable named

CONTROLLING YOUR PROGRAM

entr. The ‘1 TO 10’ in the FOR statement sets the starting and end-
ing values of the counter, and therefore the number of repetitions. As
you can see from the results of your program, the counter variable
starts at 1 on the first pass through the loop, and increases by one
each time through. When it reaches the upper limit (10), the counter
tells the computer that the loop is done, and the computer proceeds to
the statement following the NEXT.
Line 30 shows a useful feature of FOR/NEXT loops:

30 PRINT “Repetition No. ";cntr

Within the loop, you can use the counter as a normal variable. Each
time through, cntr will contain a different value, depending on the
number of times the computer has repeated the loop. With careful
planning, you can often use this to your advantage.

The counter variable does not need to start from 1. You can choose
any numbers you want for the starting and ending values—even neg-
ative numbers. Try some other values in line 20 of this program, such
as the following:

20 FOR cntr 7TO 14
20 FOR cntr = 329 TO 364

20 FORcntr = -=3TO 6
20 FORecntr = 8TOS

Note that in the last of these examples, the upper limit on the counter
is less than the starting value. When this happens, the computer goes

The Loop is Oeginning.
Repetition No.
Repetition No.
Repetition No.
Repetition No.
Repetition No.
Repetition No.
Repetition No.
Repetition No.
Repetition No.
Repetition No. 10

The Loop is Finished.

SO0 <0 P W =

Figure 9.3: An example of how a FOR/NEXT loop can be used to repeat
a PRINT statement.

145

146

THE EASY GUIDE TO YOUR COLECO ADAM

through the loop only once, then continues past the NEXT statement.

You can also ask the computer to increase the counter each time by
some number other than 1. You do this by adding a STEP number to
the end of the FOR statement, like this:

20 FORcntr = 1 TO 10 STEP 2

If you run the program with this statement, you will find that the
counter increases by 2 each time: 1, 3, 5, 7, 9. Note that the counter’s
value is never exactly 10 in this case, but it stops the loop at 9, just
before it goes over the limit.

You can also use the step to make the loop counter decrease instead
of increase. To do this, give the step a negative value:

20 FORcntr = 10 TO 1 STEP -1

Now the counter will start with the value 10. When it reaches the end
of the loop, it will add —1 to the counter, effectively subtracting one
from it. The loop will then repeat with the values 9, 8, and so forth.
When it reaches 1, the loop will end and the program will continue.

You can give the counter variable any name you want. Make sure,
however, that the counter’s name in the FOR statement exactly
matches the name you use in the NEXT statement to end the loop. If
it doesn’t, you get an error. Many people choose to give simple names
to their FOR/NEXT counters—especially one-letter names such as i, j,
and £.

You can have any group of statements within your loop—even
another loop. Try out the following program:

10 PRINT “The Loops Are Beginning”
20 FORi=1T03

30 PRINT “ Outer Loop —- "ji

40 FORj=1T04

50 PRINT “ Inner Loop —— "ij

60 NEXT |

70 PRINT “ Inner Loop Is Finished”
80 NEXTI

90 PRINT “Both Loops Are Finished”

Spaces were added to the messages in lines 30, 50, and 70 so that the
screen display will reflect the structure of the program when you run it.

CONTROLLING YOUR PROGRAM

The results are shown in Figure 9.4. As you can see, the outer loop
is repeated three times in the course of the program, each time print-
ing the value of its counter variable, ¢. Each time through this outer
loop, however, the computer encounters the inner loop, with a
different counter variable, j. This tells it to repeat the print statement
in line 50 four times on each of its three passes through the outer
loop.

There is only one restriction on the use of a loop within a loop: the
inner loop must be entirely contained within the outer. You must
make very sure that the NEXT of the inner loop comes before the
NEXT of the outer loop, as in the above program. Otherwise you will
get an error.

FOR/NEXT loops are useful for almost every type of program. In
most programs you will need to repeat statements, and for many tasks
repetition is essential. Here are some examples of ways you can use

FOR/NEXT loops:

Calculations Many computations have to be done over and over
again. Often, you need to have a whole list of answers to the same
simple problem, and you'd rather not have to calculate it each time.

Suppose, for instance, that you wanted to buy a number of gadgets

The Loops Are Beginning.

OQuter Loop =-- 1
Inner Loop -- 1
Inner Loop == 2
Inner Loop == 3

Inner Loop == &
Inner Loop is Finished.

Outer Loop -- 2
Inner Loop == 1
Inner Loop -- 2
Inner Loop =-- 3
Inner Loop -- &

Inner Loop is Finished.
Outer Loop -- 3
Inner Loop == 1
Inner Loop == 2
Inner Loop -- 3
Inner Loop =-- &

Inner Loop is Finished.

Both Loops Are Finished.

Figure 9.4: A loop within a loop can give interesting results.

147

FTHE EASY GUIDE TO YOUR COLECO ADAM

at $11.39 apiece. You'd like to buy several, but the number you buy
will depend on the cost. So, you write a program to make up a table:

10 REM Table of Gadget Costs
20 price = 11.39

30 REM Print Headings

40 PRINT "Number"”,"Cost"
50 PRINT

60 FORi=1TO20

70 cost = i*price

80 PRINT i,cost

90 NEXT |

When you run this program, you will get a table, as in Figure 9.5,
that shows the cost for any number of gadgets between 1 and 20.
Notice that in lines 40 and 80 a comma is used instead of a semicolon.
As you may recall, a comma between messages in a PRINT state-
ment tells the computer to arrange numbers neatly in columns.

Graphics For many types of pictures, you must use some controlled
form of repetition, so that you don’t have to plot every point and line

Number Cost

1 11.39
2 22.78
3 3617
(A 45.56
5 56.95
6 68.34
7 79.73
B 91.12
9 102.51
10 113.9
11 125.29
12 136.68
13 148.07
14 159.46
15 170.85
16 182.24
17 193.63
18 205.02
19 216.61
20 227.8

Figure 9.5: A FOR/NEXT loop will let you create a table

CONTROLLING YOUR PROGRAM

manually. You can use a FOR/NEXT loop for any figure that cannot
be drawn with a few straight lines.

You will need to use a FOR/NEXT loop if you want to draw a
solid figure. To see how this works, try the following program:

10 REM Solid Triangle
20 HGR

30 HCOLOR = 12
40 FORy = 0TO 158
50 HPLOT Oy TO Y

This program has the computer draw a line at every value of y from 0
to 158. At each y, it draws a horizontal line y units in from the left edge
of the screen (coordinate 0,y). The result is a solid triangular region
from the top of the screen to the bottom, as shown in Figure 9.6.

Delays Each time the computer has to repeat a FOR/NEXT loop, it
pauses for a fraction of a second. In most programs, vou will hardly

Figure 9.6: You can draw solid regions on the screen, using FOR/NEXT loops

150

THE EASY GUIDE TO YOUR COLECO ADAM

notice this delay. If you ask for a large number of repetitions, though,
you can slow down the action by creating a noticeable pause.

Write a FOR/NEXT loop with many repetitions at the place where
you want the pause: :

20 FORt = 1 TO 5000
30 NEXTt

This loop accomplishes nothing as it goes through its 5000 repetitions;
however, the computer takes about five seconds to complete the loop.
This pause might be helpful in a program such as this:

10 PRINT “Patience Test"
20 FORt = 1 TO 5000
30 NEXTt

40 PRINT "You Passed!”

When you run this program, the computer immediately displays the
words

Patience Test

It then goes into the ‘‘do-nothing loop”” and waits about five seconds
before congratulating you.

Delay loops are common in many BASIC programs. Since the
FOR and NEXT statements must appear together, many people
write their delay loops on a single line, separated by a colon:

20 FORt = 1 TO 5000: NEXT t

In these and other uses, FOR/NEXT loops give you a new range
of control over your computer. They let you repeat a group of state-
ments any number of times, then go on to the next part of the pro-
gram, While the computer is repeating the loop, it also keeps track of
a counter variable, which you can use in your calculations. You will
find more uses for these statements as you explore the capabilities of
your computer.

IF STATEMENTS: MAKING DECISIONS

You can also control the way the computer runs your program by
having it make decisions. With the IF statement, you can have the

CONTROLLING YOUR PROGRAM

machine decide whether or not to do something depending on the val-
ues of certain variables.

Of course, the computer can’t make an independent decision. You
have to tell it to do one thing if a certain condition is met, and
another thing if it isn’t. The computer then makes its choice in
response to the information you give it.

The IF statement consists of two parts: a condition and a response.
The general form of the IF statement is

10 IF condition THEN response

When you actually write this statement, you will replace the words
condition and response with a specific comparison and command.

The condition will usually be a comparison between a variable and
a fixed number. You could, for example, test to see if the variable n is
equal to 0. You would start by writing

10 IFn=0THEN...

The computer would check the value stored in n. If it is exactly 0, the
computer will carry out the response. If n is not 0, the computer will
skip the response and proceed to the next statement in the program.

You can use a variety of arithmetic comparisons in the IF state-
ment’s condition. The most important are:

equal to

greater than

greater than or equal to
less than

< = less than or equal to
<> not equal to

AVVI
I

You can also combine two or more conditions with the words AND
and OR. If you want to see if n is more than 5 and less than 10, you
could use the condition

10 IFn>5ANDN < 10 THEN . ..

The computer will carry out the response only if n has a value
between 5 and 10.

The response, which follows the word THEN in the statement, can
be any BASIC command. If the condition in the IF part is satisfied,
the computer will follow the command; if the condition isn’t satis-
fied, it will ignore the command.

151

152

THE EASY GUIDE TO YOUR COLECO ADAM

Here are some examples of valid IF statements:

10 IFi = 10 THEN PRINT “Number Is Ten"
20 |IF mode = 0 THEN HGR
30 |IF size > 20 THEN size = 20

Line 10 will display a message on the screen if at that point the vari-
able 7 is equal to ten. If i has any other value, no message is dis-
played. Line 20 uses an IF statement to switch the computer into
high-resolution graphics, if it discovers the variable mode has been
given the value 0.

Line 30 shows a common use of the IF statement. When it arrives
at this statement, the computer checks to see if the variable ‘size’
exceeds 20. If it does, the computer resets it to 20. After this state-
ment, you can be certain that the values of the variable ‘size’ will not
exceed this maximum.

To see the IF statement in action, let's try a simple program that
lets you guess at a number from 1 to 100. Type in this program:

10 answer = 57

20 PRINT

30 REM Blank Line

40 INPUT “Type a Number —— ";n

50 IF n < answer THEN PRINT “Too Small"
60 IF n > answer THEN PRINT “Too Large”
70 IF n = answer THEN PRINT “Correct”
80 GOTO 20

Line 10 of this program gives the correct answer to the computer. The
rest of the program is an infinite loop that asks you to type a number,
then compares it to the correct answer.

When you run this program, the computer will start by asking you to

Type a Number ——

You know the answer (57), but try some other numbers too. Give
your response and press RETURN. The computer will say either Too
Small, Too Large, or Correct, depending on the number that you
type. The computer makes its choice according to the IF statements in
lines 50 through 70, then prints the appropriate response. Line 80
sends the computer back to the beginning of the loop, to ask for
another number. Figure 9.7 shows the results of several guesses.

CONTROLLING YOUR PROGRAM

When you have finished, press CONTROL-C and RETURN to stop
the program.

You can change the expected answer merely by changing line 10.
You might even enjoy playing this as a game with a friend. Store a
number in the computer by typing it into line 10, then clear the
screen and run the program. You can then have a friend try to guess
the number that you typed in.

IF statements are often used to ask the computer to GOTO another
part of the program only under a certain condition. You could, for
example, have the number-guessing program go back to line 20 only
if the wrong answer is typed. Replace the simple GOTO statement in
line 80 with the following IF statement:

80 IF n <> answer THEN GOTO 20

The <> is a “not equals” condition that will send the computer on
two different paths through the program, depending on whether the
values of the two variables are equal. If they are not equal, the com-
puter will jump directly back to line 20 and continue from there. If
the numbers are equal, however, the condition will be false, and the
computer will skip the GOTO command. Normally, it would then
continue with the next statement, but since statement 80 is the last
line, the program simply ends.

An IF statement with a GOTO response provides you with a way
to split your program into two parts, with the computer choosing its

Type a Number == 35
Too Small

Type a Number == 64
Too Big

Type @ Number -- 51
Too Small

Type a Number -- 58
Too Big

Type a Number == 57
Correct

Type a Number --

Figure 9.7: Results of the number-guessing program.

153

154

THE EASY GUIDE TO YOUR COLECO ADAM

path depending on the IF statement’s condition. You might, for
example, write a program such as this:

10 PRINT “Type a Number —— ": n
20 IFn = 0 THEN GOTO 50

30 PRINT “Statement 30 is used”
40 GOTO 10

50 PRINT “Statement 50 is used"
60 GOTO 10

This program asks for a number, then tests to see if it is zero. If it is,
the computer jumps to statement 50 and prints a message. If the
number is not zero, the computer bypasses the response and con-
tinues with the statement that follows, number 30. In either case, the
computer returns to line 10 after it prints the message.

The IF statement lets you use a technique called data checking.
Often when you write a program that asks for input from the key-
board, you need a specific type of response. You might, for instance,
expect a number from 1 to 12, to represent a month of the year. You
can guard against meaningless responses by making a simple check:

10 INPUT “Which Month? ”; month
20 IF month < 1 OR month > 12 THEN GOTO 10
30 PRINT "OK"

When you run this program, the computer will ask you to type a
number to represent a month. If the value you type is less than 1 or
greater than 12, however, the IF statement will send the computer
back to line 10 to ask for another value. It will keep doing this until
you type a number between 1 and 12. In any statements you might
add after line 30, you can be confident that the variable has a value
that represents an actual month.

IF statements clearly have many other uses. Whenever you want
your computer to do more than a simple task, you will need to give it
directions for making choices along the way. With the IF statement,
you can easily control the way it makes these choices.

GOSUB: SUBROUTINES

There is another important way you can change the start-to-finish
flow of your program. This is with a subroutine or subprogram, a series of

CONTROLLING YOUR PROGRAM

statements that you set off from the rest of your program and use as a
unit whenever you want.

To use a subroutine, you must call it with a GOSUB statement,
such as this:

20 GOSUB 1000

This GOSUB statement acts just like a GOTO statement, sending
the computer to line number 1000 to continue its work. With
GOSUB, however, you tell the computer to return to the program’s
next line after it has finished using the subroutine.

A subroutine is like any other group of statements, except that it
ends with the command RETURN. When the computer gets to this
final command, it sees that the subprogram is done, and goes back to
the statement following the original GOSUB. In this way, you can tell
the computer to go off and follow a group of instructions, then come
back to where it left off.

To see how this works, let’s try a sample program:

10 PRINT “Main Program Begins”
20 GOSsuB 1000
30 PRINT “Main Program Continues”
40 END
1000 REM Sample Subroutine
1010 PRINT “Now Running Subroutine”
1020 RETURN

When you run this program, the computer will display the following
statermments:

Main Program Begins
Now Running Subroutine
Main Program Continues

The computer began with line 10, the beginning of the main pro-
gram. At line 20, it jumped to the subroutine and printed the second
message. At the RETURN statement, however, the computer
finished the subroutine, returned to the main program, and continued
with line 30, which immediately follows the GOSUB statement that
called the subroutine.

The END command in line 40 is quite important. It signals the
end of the main program and tells the computer to stop. If this
statement were not there, the computer would continue running the

155

156

THE EASY GUIDE TO YOUR COLECO ADAM

program, going on to line 1000 of the subroutine. Always use an END
statement after the main program and before the subroutine unless you
want to rerun the subroutine at the end of the main program.

Your program can have many different subroutines, as long as you
end each subroutine with a RETURN and don’t repeat any statement
numbers. While you can choose any statement numbers for your sub-
programs, you will find it best to use rather high numbers, such as the
1000 chosen here, in case you later decide to expand your main pro-
gram. Also, it is generally best to start each subroutine with a remark
(REM statement) that describes what the subprogram does.

You can put any kind of statement in a subroutine. You can even use
another GOSUB statement to call a second subroutine. If you do this,
the RETURN statement from the second subprogram will send the
computer back to the GOSUB statement in the first. From there the
computer will complete the first subroutine, then return to finish the
main program.

You may be tempted to use a GOTO rather than a RETURN to
get back to the main program. Don’t. Although there is a way to do
this, you will usually end up confusing both yourself and your com-
puter. Make your subroutines self-contained, and be careful to have
them RETURN when they are done.

Why use subroutines? There are a variety of reasons why you might
want to break up your program into smaller parts. Here are a few:

* 16 use a group of statements more than once. In large programs, you
often have certain tasks that you need to do over and over. If

you just want to repeat a group of commands several times in
one place, you might be able to use a FOR/NEXT loop. If,
however, you need to reuse the group in another part of your
program, you would have to retype the commands each time.
Instead, it would be easier to group the statements in a single
subroutine. Then, each time you need to do the task, you can
call it with a simple GOSUB statement.

* To make a program modular. Very long programs can seem ter-
ribly daunting if you try to view them all at once. By break-
ing the program down into more manageable units, you can
make it much easier to understand. Some people write their
main programs as a series of GOSUB statements, which
direct the computer to each of the modules in turn.

CONTROLLING YOUR PROGRAM

* To develop a subroutine library. At some point, you might want
to put together a collection of subroutines that you often use
as building blocks for different kinds of programs. If you
store all these routines on a cassette or diskette, you can load
any one of them back into the computer whenever you want
to use it in a program.

With subroutines, we have reached the end of our exploration of
the Adam’s BASIC language. With the statements you have learned
in this chapter, you are well on your way toward programming your
computer effectively.

OPTIONAL EXERCISES

1. Write a program that will ask you for a number, then say
whether that number is positive, negative, or zero. You will
need an INPUT and an IF statement. Remember that you
use a minus sign to type a negative number.

2. Write a subroutine that draws a rectangle around the entire
graphics screen. Add this subroutine to one of your other
graphics programs so that you have a frame for your picture.

3. Write a FOR/NEXT loop to calculate the sum of the num-
bers between 1 and 100. Hint: set up a variable named
‘sum’ and add the counter variable to it each time through
the loop.

SUMMARY e

In this chapter, you have learned many new ways to control your
machine. You are no longer restricted to writing programs that the
computer simply marches through top-to-bottom. You can have it
jump about, turn loops, make decisions, and run subprograms.

The GOTO statement tells the computer to jump to another state-
ment. You can jump forward or backward within your program, and
create infinite loops if you wish. This is often a simple way to do
repetitive tasks,

With FOR and NEXT statements, you can make your computer
repeat a group of statements a certain number of times, then go on to
the rest of the program.

157

158

THE EASY GUIDE TO YOUR COLECO ADAM

IF statements let your computer make decisions in the course of
your program. At any point, you can tell the computer to test a con-
dition. If the condition is true, your IF statement will have the com-
puter take some action. It can print a message, change a value, or go
to another part of the program—anything you choose.

The GOSUB statement gives you yet another way to determine the
flow of your program. You can break a large program up into smaller
blocks, then use the blocks whenever you need them. Subroutines
let you simplify your programs and allow you to work with one piece
at a time.

With this chapter, you have come to the end of the standard pro-
gramming techniques covered in this book. You know how to write
programs, use variables, and control the order in which the computer
follows your commands. You have had a glimpse of your Adam’s
potential and are ready to explore on your own. The fun is just
beginning.

Afterword

In the course of this book, you have done many things with your
Adam. You learned how to set it up and how to use preprogrammed
software. You learned to use the word processor to type documents.
Then, in the third section, you began to give commands of your own
and to write programs that control the computer in various ways.

These procedures are only the beginning, however. With these
basic skills, you can go on to explore many other possibilities. You can
connect optional equipment to your system or write complex pro-
grams that solve important problems.

In these final pages, I will try to give you an idea of some of these
other possibilities. I cannot cover everything, though. If you want
more detailed information, check some of the books in the biblio-
graphy, or try some experiments on your own.

ADD-ONS

Coleco is planning a large line of add-on devices to expand its
Adam. Some of these may never materialize, but they are worth look-
ing out for.

Two of the most important add-ons are mentioned at the end of
Chapter 4. If all goes as planned, you will soon be able to have a sec-
ond cassette drive installed in your Adam. Or, for greater speed and
reliability, you will be able to buy a disk drive for your system. These
optional storage devices will let you use a larger variety of software.

Another useful accessory is a telephone modem, a device that lets your
computer communicate electronically with another computer. The
modem converts your computer’s electronic signals into a warbling

160

THE EASY GUIDE TO YOUR COLECO ADAM

sound, then sends them directly over your telephone lines. With the
help of a special program, your computer can then send information
directly to another computer. It can also receive messages and store
them in its memory, or communicate with one of the electronic news
and information services.

You will also be able to buy a memory expansion for your Adam. This
plug-in card will add another 64K bytes of memory to the 80K that
comes with the computer. Make sure you really need the extra mem-
ory before you buy it, though. The Adam’s original memory is quite
enough for most people.

Further down the line, Coleco is planning a number of other options
that will give access to software written for other computers. One
expansion will allow you to use the CP/M operating system, described
briefly in Chapter 1. Another planned expansion will let the Adam run
software designed for the IBM Personal Computer. Such expansions
would let you choose programs from the two largest lines of software
currently available. Don’t hold your breath, though: these expansions
will be a long time coming, if they ever do move into production.

Although all these add-ons have been officially announced by Col-
eco, some may never be marketed. Check with your dealer for more
information and for detailed descriptions.

OTHER DIRECTIONS -

The chapters in the third section of this book describe some of the
ways you can control your computer directly. You learned how to cre-
ate a program, use variables to perform calculations, and control the
program’s flow with loops and decisions. With special graphics com-
mands, you can paint various types of pictures on the screen.

While we have covered all the fundamental concepts of program-
ming, there are many other things you can do. You can, for example,
use arrays that let you store an entire table of numbers in the memory
without giving each number an individual variable name. You can
save words or numbers as data on cassette or diskette. You can then
later retrieve this information and reuse it in other programs.

In principle, you can also use BASIC programs written by other
people. Many books and magazines print BASIC programs that you
can simply type into your computer and run directly.

AFTERWORD

Unfortunately, computer manufacturers do not all use the same
version of the BASIC language. Unless a program is written specifi-
cally for the Adam, you cannot be certain that you can simply run it.
Since the Adam is so new, few books and magazines offer programs
specifically designed for it. For now, your choices may be limited.

However, the Adam’s BASIC is virtually identical to the BASIC pro-
gramming language of the Apple II computer. While there are a few
differences, many Apple BASIC programs can be run on the Adam with
only minor changes. Since the Apple II is one of the most popular com-
puters, you can readily find BASIC programs written for it.

If you try to run Apple II programs, you will find that the minor
differences between the two machines do cause some problems, espe-
cially for a novice at programming. For example, the Adam’s BASIC
will display only 31 characters on each line, compared with the
Apple’s 40. As a result, you may find the Adam’s display to be
almost unreadable for complex Apple programs. Other differences
between the more technical aspects of the two computers can require
complex changes in programs. The simpler programs, however,
should work almost identically on the two machines.

There are several other programming languages that you can use
with your Adam. One of the most popular is Coleco’s Logo, a graphics
language designed for children. In Logo, you give commands to move
a small turtle around the screen. As it moves, the turtle lays down a
trail, which creates a picture. Logo is an excellent instructional tool for
introducing children to the basic principles of programming.

With any programming language, the computer must translate the
command words into the specific codes that it can use. This process is
slow and inefficient for complex programs that must run quickly. One
can bypass the translation stage completely by writing programs in
machine language.

With machine language, you are actually giving commands at the
deepest level of the computer, and can exert direct control over its
operation. Certain of the advanced graphics features of the Adam can
only be controlled with direct machine language commands. Machine
language also lets the computer run much more quickly, since
inefficient operations are reduced.

Unfortunately, machine language is very technical and difficult to
use, since it requires you to keep track of every single operation the
computer must do. You must know a lot about the internal workings of

161

162

THE EASY GUIDE TO YOUR COLECO ADAM

the machine and must be willing to do tedious programming. Even
professional programmers usually avoid machine language unless
there is a clear need for it.

Machine language is closely related to assembly language, which is
slightly easier to use. While you must still give meticulous commands
for every operation you want the computer to do, you can use labels
and verbal commands, rather than numerical codes. The computer
then translates assembly language directly into machine language.

Some books and magazines take a middle ground between BASIC
and machine language by using two special BASIC statements:
PEEK and POKE. These commands let you read and store values
directly in the computer’s memory without giving them a variable
name. This gives you some direct control over the internal operation
of the computer. The process is, however, quite cumbersome and
hard to understand.

Whatever you do, I hope that you will continue your explorations.
Many books and resources can help you learn more than I have been
able to cover in these pages.

Your main resource, however, is yourself. Be creative with your com-
puter; play around with it. There are many wonderful things you can
do with your machine, whatever approach you choose to take.

Appendix

Further
Reading

Because the Adam is such a new machine, very few books have
been written specifically about it. I have seen only one so far:

Word Processing with Your Coleco Adam
by Carole Alden
(SYBEX, 1984).

This book offers an in-depth guide to the Adam’s built-in word pro-
cessor and provides far greater detail than I could in this volume. It is

well organized and clearly written, and it contains useful tips on how
to get the best results from your Adam’s word processor.

Although few books are devoted exclusively to the new Adam,
there are many general resources. The Adam’s BASIC programming
language is an almost exact duplicate of the BASIC for the popular
Apple II computer, for which hundreds of books are available. While
you may need to make a few allowances for the differences between
the Adam and the Apple II, you can use most of these books right off
the shelf. Here are a few of the best:

Your First Apple Il Program

by Rodnay Zaks

(SYBEX, 1983).

This fine introduction to fundamental techniques of BASIC program-

ming focuses on the thought processes you need for writing a pro-

gram. The delightful illustrations by Daniel Le Noury help to clarify
the major concepts.

164

THE EASY GUIDE TO YOUR COLECO ADAM

The Apple 11 BASIC Handbook
by Douglas Hergert
(SYBEX, 1983).

This is the best reference guide available for the Apple II BASIC lan-
guage. Arranged as an alphabetical dictionary, this book gives
detailed, readable descriptions of all Apple BASIC commands, as well
as common computer words.

Apple Il User Guide

by Lon Poole

(Osborne/McGraw-Hill, 1982).

This 400-page book gives every piece of information that you would

ever want to know about the Apple II computer. This is an essential

reference book for anyone who wants to do serious programming in

BASIC on the Adam. It is not, however, light reading. The descrip-

tions are fairly technical and assume some previous knowledge of
computers.

Apple Il BASIC Programs in Minutes
by Stanley R. Trost
(SYBEX, 1984).

This is a collection of short BASIC programs which you can type
directly into your Adam and use, with no prior knowledge of BASIC
programming. Since the programs were designed for the Apple II
computer, some may require slight modifications to work on the
Adam. The programs cover a range of financial, home management,
and educational applications.

Appendix

Reference Guide
to BASIC

This reference list of the BASIC language summarizes the com-
mands described in this book. For a complete reference guide, use the
SmartBASIC manual included with your Adam, or buy Douglas
Hergert's excellent book, The Apple II BASIC Handbook. The Adam’s
BASIC is virtually identical to the Apple II's language.

CATALOG

Displays the directory of all the files that are currently stored on the
tape in the cassette drive. This command also shows how much space
is remaining on the tape. Backup files are indicated by a lowercase a
to the left.

If you have a second cassette drive, you can see its directory by typing

CATALOG, D2

COLOR = n

In the low-resolution graphics mode: chooses the color that will be
used to draw in future PLOT, HLIN, and VLIN statements. The
computer will continue to use that color until it is given another
COLOR command. The Adam’s low-resolution graphics colors are
shown in Figure 6.3 on page 87.

166

THE EASY GUIDE TO YOUR COLECO ADAM

CONT

Restarts a program that has been stopped with the CONTROL-C
key. The program will continue from the statement it was using when
it was stopped. '

CONTROL keys

To use these special function keys, hold down the CONTROL key
and press the appropriate letter on the keyboard.

CONTROL-C: Stops a program as it is running. This procedure
is used to break out of an infinite loop or to stop a program before it
has finished. You may also need to press the RETURN key before
the program will stop.

CONTROL-P: Makes an exact printed copy of whatever is cur-
rently displayed on the screen. (Text mode only.)

CONTROL-S: Stops a listing that is being displayed on the
screen. Most often used when a LIST or CATALOG command pro-
duces more than a full screen of displayed text. Press CONTROL-S
again to restart the display.

DATA

Used with the READ statement to assign numbers to variables.
The numbers in the list after the word DATA are assigned in
sequence to the corresponding variables in the READ statement. If
numbers remain in the DATA statement after the READ statement’s
variables have been filled, further READ statements will continue to
use them, starting with the first unused number.

END

Marks the last statement in a program. An END statement is
unnecessary if a program proceeds strictly from start to finish. If,
however, subprograms or other statements follow the end of the main
program, an END statement must follow the main program.

REFERENCE GUIDE TO BASIC

FOR/NEXT

The FOR statement marks the beginning of a loop, and tells the
computer how many times to repeat the loop. The general form is:

FOR j=a TO b STEP ¢

The FOR statement must specify a counter variable (i), its starting
value (a), and its ending value (4). The statement can also designate
the step (¢)—the increment by which the counter is to increase each
time through the loop. If no step is designated, the computer assumes
it is 1. FOR must always be paired with a NEXT statement, which
marks the end of the loop.

GOSUB n

Asks the computer to run the subprogram that starts at statement
number n. The computer will run the subprogram until it reaches the
RETURN statement that marks the subprogram’s end. The com-
puter then resumes the main program with the statement following
the GOSUB.

GOTO n

Tells the computer to jump directly to statement number n and
continue from there.

GR -

Clears the screen and shifts into low-resolution graphics. If the
computer is already in low-resolution graphics, the mode will not
change, but the graphics screen will be cleared. Each GR command
must be followed by a COLOR command.

167

168

THE EASY GUIDE TO YOUR COLECO ADAM

HCOLOR = n

In the high-resolution graphics mode: chooses the color that will be
used to plot all points and lines in hplot statements. The codes for
high-resolution colors are different from the codes for the low-
resolution graphics mode: see Figure 6.3 on page 87 for the correct
values. This color remains in effect until you give another HCOLOR
command or reset the graphics mode with a GR or HGR command.

Don’t confuse HCOLOR with COLOR, a low-resolution graphics
command.

HGR

Clears the screen and chooses the high-resolution graphics mode.
You must choose a color with the HCOLOR command each time you
use HGR.

HLIN xleft, xright AT y

In the low-resolution graphics mode: draws a horizontal line across
the screen, from column xlgft to column xright. The entire line will be
drawn on row y, counting down from the top of the screen, and will
have the color chosen in the most recent COLOR statement. The coor-
dinates must be within the allowable range for the graphics: both x and
» must be between 0 and 39. Also, xlgft and xright must be different.

HOME

Clears the screen in the text mode and places the cursor in the
upper-left corner. Don’t confuse the typed HOME command with the
HOME key on the keyboard.

HPLOT

In the high-resolution graphics mode: plots a point or draws a
line between two points, using the color selected by the most recent

REFERENCE GUIDE TO BASIC

HCOLOR statement. To plot an individual point, give one set of
coordinates:

HPLOT x,y
For a line between two points, use the word ‘to’:
HPLOT x,,y, TO x5y,

To continue a line on to other points, add more ‘to’-points at the end
of this statement or type another HPLOT statement:

HPLOT TO x5y
(See Chapter 6 for details.)

HTAB x

In the text mode: moves the cursor to column x. The next PRINT
statement will then display its message starting at that point. See also
VTAB,

IF/THEN | =

Tells the computer to make a decision. If the condition following
the IF is met, the computer carries out the command that follows the
THEN. If the condition is not met, the computer skips the command
and goes directly to the next statement.

INPUT

Directs the computer to stop each time it runs the program so that you
can supply a value for a variable. The computer displays a question
mark, then waits for you to type your answer and press RETURN.
Your response is stored in the variable named in the INPUT state-

ment.

LIST

Used by itself, LIST directs the computer to display the stored pro-
gram on the screen. LIST followed by a statement number displays

169

170

THE EASY GUIDE TO YOUR COLECO ADAM

only that particular statement. LIST followed by two statement num-
bers tells the computer to display those two statements and all those
in between.

LOAD

Retrieves a program that has been stored on a cassette tape. You
must supply the name of the file you want to retrieve:

LOAD filename

The computer will erase any program currently in its memory before it
loads the new one. To load a file from the second cassette drive, type:

LOAD filename, D2

NEW

Clears the computer’s program memory so that you can type a new
program. If you forget to use this command, lines from your old pro-
gram may be mixed in with your new statements.

NEXT

Marks the end of a FOR/NEXT loop. This statement must always
be paired with a preceding FOR statement. The variable name after
the word NEXT must exactly match the name of the counter variable
in the FOR statement.

PLOT x,y

In the low-resolution graphics mode: paints a single point at the
coordinates x,5. Both x and y must have values between 0 and 39.

REFERENCE GUIDE TO BASIC

PRINT

Displays a message on the screen. If PRINT is followed by a mes-
sage in quotation marks, the computer prints that message. If PRINT
is followed by a word not in quotation marks, the computer treats the
word as a variable name and displays its current value. Several mes-
sages may be combined in a single PRINT statement, using a semi-
colon (;) to separate them. A semicolon at the end of the statement
keeps the computer from dropping down to the next line before dis-
playing the next message.

PR#

PR#1 instructs the printer to print the results of commands and
programs that the computer is running. Any text that would normally
be displayed on the screen will also be printed on paper. Type PR#0
to stop the printing.

READ : e

Works with the DATA statement to assign a list of values to a series
of variables. Each variable name in the READ statement is assigned
the corresponding value in the DATA statement. The first READ
statement in a program loads its numbers starting with the first
DATA statement; additional READ statements continue with the
first unused number in the DATA statement’s list.

RETURN

Marks the end of a subroutine and instructs the computer to
resume the main program. The computer returns to the statement fol-
lowing the GOSUB that called the subroutine.

RUN

Asks the computer to execute the program stored in its memory.
Program lines are executed in order of their statement numbers,

171

172

THE EASY GUIDE TO YOUR COLECO ADAM

unless a GOTO, GOSUB, or FOR/NEXT statement alters the flow.
At the end of the program, the computer stops and displays a bracket
prompt. The program remains stored in the memory until the power
is turned off or a NEW command is given.

SAVE

Records the program stored in the computer’s memory onto a cas-
sette tape. Each saved program must be given a name so that the
computer can later locate it on the cassette:

SAVE filename
To save programs on a second cassette drive, type:
SAVE filename, D2

TEXT

Returns the computer to the text mode. This command is used to
reset the computer from the low-resolution (GR) or high-resolution
(HGR) graphics modes.

VLIN ytop, ybottom AT x

In the low-resolution graphics mode: draws a vertical line in
column x. The line will be of the color last chosen in a COLOR state-
ment, and will extend from row ytop down to row ybottom. All three

numbers must have values between 0 and 39. Also yiop and ybottom
must be assigned different values.

VTAB y

In the text mode: VTAB moves the cursor down to row j, counting
from the top of the screen. The value of y must be between 1 and 23.
To move to row 0, use the HOME command. See also HTAB.

REFERENCE GUIDE TO BASIC 173

The equal sign acts as a command, assigning a value to a variable.
The computer first carries out any calculations involved in the expres-
sion to the right of the equal sign, then stores the result in the variable
to the left. For example, the statement

| =2+2
would assign the value 4 to the variable /.

The equal sign is also used in the COLOR and HCOLOR
commands.

Answers to
Selected Exercises

5.2: Give the command:
print “ONE":print "TWO":print “THREE"
5.3: Type this command:

home:vtab 23:htab 13:print “Bottom"

This command has the computer display the word ‘Bottom’ on the
last row on the screen. After the computer has finished printing the
message, however, it automatically drops down to the next line on the
screen to print its bracket prompt on a new line. Since the next line
would take the computer off the bottom of the screen, the computer
moves the rest of the display up.

6.1: There are many possible answers to this problem. This is one
series of commands that would work:

gr
color = 2

hlin 0,39 at 5
color = 9

hlin 5,20 at 15
color = 14

hlin 0,25 at 30

176 THE EASY GUIDE TO YOUR COLECO ADAM ANSWERS TO SELECTED EXERCISES 177

6.2: Type the six commands shown at the top of page 95. Then add 8.3: It will set the new value of j to equal the old value (10) plus 1,
your commands to draw the smaller blue box. Many sequences are or 11.
possible; for example:
9.1:
color = 7
hplot 40,40 to 120,40 10 INPUT “What Number? “; n
hplot to 120,120 20 IF n>0 THEN PRINT “Positive"
hplot to 40,120 30 IF n<0 THEN PRINT “Negative”
hplot to 40,40 40 |F n=0 THEN PRINT “Zero”
7.1: Add this line to the program: 9.2:
55 hcolor = 6 1000 REM Subroutine to Draw Frame
1010 HPLOT 0,0 TO 255,0
- T 1020 HPLOT TO 255,158
O 1030 HPLOT TO 0,158
70 hplot 20,20 to 140,140 1040 HPLOT TO 0,0

1050 RETURN

Note that the GOSUB statement that calls this subroutine must come

If you have just done exercise 1, the diagonal line will be blue.

7.3: The four bugs are: after the initial HGR and HCOLOR statements, or the frame will not
1. The word PRINT is misspelled in line 10. gk :
2. COLOR in line 30 is not a high-resolution graphics com- 9.3: Try this program:
mand. HCOLOR is what is needed. M i e
3. The second coordinate (734) in line 40 is outside the allowed 20 FORi = 1TO 100
range. 30 sum = sum+i
4. The last point in the HPLOT statement in line 60 has only 40 NEXT |
one coordinate. 50 PRINT sum

The answer should be 5050.
8.1: Add a statement number 15, and replace statement 20, as

follows:

15 input “Color Number? "; n
20 hcolor = n

8.2: Add these statements to the program on page 133:

120 rem Inverted Triangle
130 hplot x,y+40

140 hplot to x+40,y—-20
150 hpilot to x+80,y+40
160 hplot to x,y+40

Adam’s Electronic Typewriter,
12, 34-38

Adam Set-Up Manual, 7, 10

Adventure games, 28

Arithmetic, 130-133

Arrow keys, 40-42, 69

Assembly language, 162

Assignment statement, 118

Auto-repeat feature, 36

Backup files, 58, 112-113
BASIC, 65
BASIC commands
CATALOG, 111-113, 165
COLOR, 86-87, 165
CONT, 141, 166
DATA, 126-127, 166
DELETE, 113
END, 155, 166
FOR/NEXT, 143-150, 167,
170
GOSUB, 155-157, 167
GOTO, 140-143, 167
GR, 85, 167
HCOLOR, 92, 168
HGR, 91-92, 168
HLIN, 88-90, 168
HOME, 76, 168
HPLOT, 92-95, 169
HTAB, 78-79, 169
IF . . . THEN, 150-154, 169
INPUT, 127-128, 169-170
LIST, 101, 104, 169
LOAD, 111, 169
NEW, 100, 109, 170

Index

BASIC commands, continued
PLOT, 88, 171
PR#, 115-116, 171
PRINT, 72-76, 170
READ, 126-127, 171
REM, 107
RENAME, 113
RESTORE, 113
RETURN, 70, 172
RUN, 101, 172
SAVE, 110, 172
TEXT, 122, 172
VLIN, 88-90, 173
VTAB, 77-78, 173
BASIC editor, 67-70
Box-drawing program,
106-108, 121-130, 142
Buck Rogers: Planet of Zoom,
18-23, 26
Bugs, 14-15, 108
Burn-in procedure, 14
Bytes, 4, 160

Calculations with BASIC,
130-133
Capital letters, 102
in program lines, 72, 74
in file names, 110
in variable names, 120
Cartridges, 24
Cassette-tape drives, 53-61,
109-114
Cassette tapes, 24-25, 53-61,
109-114
care of, 21, 54-56

180

THE EASY GUIDE TO YOUR COLECO ADAM

ColecoVision game machine,
7-10
Expansion Module #1, 24
Expansion Module #3, 8
Commercial software, 6
Connecting the computer, 8-10
Control keys, 166
CONTROL-C, 141
CONTROL-P, 115
CONTROL-S, 112
Counter variables, 144-147
CP/M operating system, 25,
160
Cursor, 36, 40-42
Customer service hotline, 14

Daisy wheels, 48
Damaged cassette tapes, 54-56,
114

Data checking, 154
Debugging programs, 108-109
Delay loops, 150
Deleting files, 113
Digital data drive, 5, 20
Digital data pack, 24

See also cassette tapes
Directories, 58, 111
Disk drives, 25, 60
Diskettes, 25, 60

Educational programs, 28-29
EJECT switch, 23

Erasing memory, 67, 100
Error messages, 70-71

File directories, 58, 111
Financial programs, 29
Fire buttons, 12

Games, 18-23, 26-28
Graphics, 4, 83-97
Graphics coordinates, 84
Graphics screen, 85, 91
adjusting, 88, 93
clearing, 87
erasing portions of, 96

HI-LITE, 45-46

High-resolution graphics, 83,
91-97

Hints and Tips booklet, 14

Infnite loops, 140-141

INIT, 114
Joysticks, 12, 28

Keyboard, 4, 35

Keys
arrow, 40-42
auto-re feature, 36
BACKSPACE, 35-36, 40, 69
ESCAPE/WP, 38, 45
HOME, 42
LOCK, 36, 72
RETURN, 34, 39, 70
SHIFT, 36

LEFTS, 135
Loading programs, 20-22,
29-30, 65-67, 111
Logo, 29, 161
Low-resolution graphics, 83-91
Lowercase letters
in program lines, 72, 74, 102
in variable names, 120

Machine language, 161
Margins, 36-37

Memory, 4, 67, 100
Memory expansion, 160
Monitors, 7, 10

Moving window format, 49
Music programs, 29

Naming files, 57, 110, 112-113

On-screen formatting, 49
Optional storage devices, 60

Paper, 48

Parentheses, 131, 135

Power switch, 7

Printers, 47-48, 115
hookup, 7-8

Programs, 5, 23, 25, 99
adding lines, 101-103
correcting lines, 103-105
debugging, 108-109
deleting lines, 103
loading, 20-22, 29-30, 65-

67, 111

Programs, continued
repeating, 142
saving, 110-111
starting, 22, 141
stopping, 141
storing, 100-102, 110
writing, 107

Prompt (]), 68

Punctuation in BASIC
colon, 74, 150
comma, 80
quotation marks, 73-74, 128,

132
semicolon, 80, 128

Question-mark prompt, 128

RESET switches
CARTRIDGE, 30
COMPUTER, 3, 22

Roller Controller, 28

Screen
adjusting, 12-13, 88, 93
clearing, 49, 76, 87, 96
controlling, 76
Screen dump, 115
Setting margins, 36-37
SmartKeys, 37
Software, 5, 17-30
Spreadsheets, 29
Statement numbers, 100-103,
105
Storing data, 53-61, 109-114
Strings, 133-135
Subroutines, 139-157
Super Action Controllers, 28
Switch box, 9

INDEX

Tab commands, 76-79
Telephone modem, 159
Televisions, 6, 9-10

Text window, 85

Trackball, 28

Tractor-feed mechanism, 48

Uppercase letters, 102
in program lines, 72, 74
in file names, 110
in variable names, 120

Variables, 117, 121, 153
changing values, 119, 121,
126-128
naming, 118-120
Video games, 26-28

Word processing
clearing the screen, 49
commands, 43
CLEAR, 49
DELETE, 45
ESCAPE/WFP, 38, 45
INSERT, 44
MOVE/COPY, 46-47
PRINT, 47
SEARCH, 50
STORE/GET, 52, 56-58, 61
UNDO, 46
controlling the cursor, 40-42,
69
correcting mistakes, 43
retrieving documents, 58-59
storing documents, 56-58
Word processors, 33-34, 38
Word wrap, 34

181

Selections from

The SYBEX Library

Buyer's Guides

THE BEST OF TI 99/4A™
CARTRIDGES

by Thomas Blackadar

150 pp., illustr, Ref. 0-137

Save yourself time and frustration when
buying Tl 99/4A software. This buyer's
guide gives an overview of the best avalil-
able programs, with information on how
to set up the computer to run them.

FAMILY COMPUTERS

UNDER $200

by Doug Mosher

160 pp., illustr, Ref. 0-149

Find out what these inexpensive machines
can do for you and your family. “If you're
just getting started . . . this is the book to
read before you buy"—Richard O'Reilly,
Los Angeles newspaper columnist

PORTABLE COMPUTERS

by Sheldon Crop and Doug Mosher
128 pp., illustr, Ref. 0-144

“This book provides a clear and con-
cise introduction to the expanding new
world of personal computers.”—Mark
Powelson, Editor, San Francisco Focus
Magazine

THE BEST OF VIC-20™
SOFTWARE

by Thomas Blackadar

150 pp., illustr, Ref. 0-139

Save yourself time and frustration with this
buyer's guide to VIC-20 software. Find
the best game, music, education, and
home management programs on the
market today.

SELECTING THE RIGHT DATA
BASE SOFTWARE

SELECTING THE RIGHT WORD
PROCESSING SOFTWARE

SELECTING THE RIGHT
SPREADSHEET SOFTWARE

by Kathy McHugh and

Veronica Corchado

80 pp., illustr., Ref. 0-174, 0-177, 0-178
This series on selecting the right business
software offers the busy professional con-
cise, informative reviews of the best avail-
able software packages.

Introduction to
Computers

OVERCOMING COMPUTER FEAR
by Jeff Berner

112 pp., illustr,, Ref. 0-145

This easy-going introduction to com-
puters helps you separate the facts from
the myths.

COMPUTER ABC'S

by Daniel Le Noury and

Rodnay Zaks

64 pp., illustr, Ref. 0-167

This beautifully illustrated, colorful book
for parents and children takes you alpha-
betically through the world of computers,
explaining each concept in simple
language.

PARENTS, KIDS, AND
COMPUTERS

by Lynne Alper and Meg Holmberg
208 pp., illustr., Ref. 0-151

This book answers your guestions about
the educational possibilities of home
computers.

THE COLLEGE STUDENT'S
COMPUTER HANDBOOK

by Bryan Pfaffenberger

350 pp., illustr,, Ref. 0-170

This friendly guide will aid students in
selecting a computer system for college

study, managing information in a college
course, and writing research papers.

COMPUTER CRAZY

by Daniel Le Noury

100 pp., illustr, Ref. 0-173

No matter how you feel about computers,
these cartoons will have you laughing
about them.

PROTECTING YOUR COMPUTER
by Rodnay Zaks

214pp., 100 illustr, Ref. 0-239

The correct way to handle and care for all
elements of a computer system, including
what to do when something doesn't work.

YOUR FIRST COMPUTER

by Rodnay Zaks

258 pp., 150 illustr., Ref. 0-045

The most popular introduction to small
computers and their peripherals: what
they do and how to buy one.

SYBEX PERSONAL COMPUTER
DICTIONARY

120 pp., Ref. 0-067

All the definitions and acronyms of micro-
computer jargon defined in a handy
pocket-sized edition. Includes translations
of the most popular terms into ten
languages

FROM CHIPS TO SYSTEMS:

AN INTRODUCTION TO
MICROPROCESSORS

by Rodnay Zaks

552 pp., 400 illustr., Ref. 0-063

A simple and comprehensive introduction
to microprocessors from both a hardware
and software standpoint: what they are,
how they operate, how to assemble them
into a complete system.

Personal
Computers

ATARI

YOUR FIRST ATARI® PROGRAM
by Rodnay Zaks

150 pp., illustr., Ref. 0-130
A fully illustrated, easy-to-use intraduction

to ATARI BASIC programming. Will have
the reader programming in a matter of
hours.

BASIC EXERCISES FOR THE
ATARI®

by J.P. Lamoitier

251 pp., illustr, Ref. 0-101

Teaches ATARI BASIC through actual

practice using graduated exercises
drawn from everyday applications.

THE EASY GUIDE TO YOUR
ATARI® 600XL/800XL

by Thomas Blackadar

175 pp., illustr, Ref. 0-125

This jargon-free companion will help you
get started on the right foot with your new
600XL or BOOXL ATARI computer.

ATARI® BASIC PROGRAMS IN
MINUTES

by Stanley R. Trost

170 pp., illustr, Ref. 0-143

You can use this practical set of programs
without any prior knowledge of BASIC!
Application examples are taken from a
wide variety of fields, including business,
home management, and real estate.

Commodore 64/VIC-20

THE COMMODORE 64™/VIC-20™
BASIC HANDBOOK

by Dougias Hergert

144 pp., illustr, Ref. 0-116

A complete listing with descriptions and
instructive examples of each of the Com:-
modore 64 BASIC keywords and func-
tions. A handy reference guide, organ-
ized like a dictionary.

THE EASY GUIDE TO YOUR
COMMODORE 64™

by Joseph Kascmer

160 pp., illustr., Ref. 0-129

A friendly introduction to using the Com-
modore 64.

THE BEST OF COMMODORE 64™
SOFTWARE

by Thomas Blackadar

150pp., illustr., Ref. 0-194

Save yourself time and frustration with this

buyer's guide to Commodore 64 soft-
ware. Find the best game, music, educa-
tion, and home management programs
on the market today.

YOUR FIRST VIC-20™
PROGRAM

by Rodnay Zaks

150 pp., illustr., Ref. 0-129

A fully illustrated, easy-to-use introduction
to VIC-20 BASIC programming. Will have
the reader programming in a matter of
hours.

THE VIC-20™ CONNECTION

by James W. Coffron

260 pp., 120 illustr, Ref. 0-128
Teaches elementary interfacing and
BASIC programming of the VIC-20 for
connection to external devices and
household appliances.

YOUR FIRST COMMODORE 64™
PROGRAM

by Rodnay Zaks

182 pp., illustr., Ref. 0-172

You can learn to write simple programs
without any prior knowledge of mathe-
matics or computers! Guided by colorful
illustrations and step-by-step instructions,
you'll be constructing programs within an
hour or two.

COMMODORE 64™ BASIC
PROGRAMS IN MINUTES

by Stanley R. Trost

170 pp., illustr, Ref. 0-154

Here is a practical set of programs for
business, finance, real estate, data an-
alysis, record keeping and educational
applications.

GRAPHICS GUIDE TO THE
COMMODORE 64™

by Charles Platt

192 pp., illustr, Ref. 0-138

This easy-to-understand book will appeal
to anyone who wants to master the Com-
modore 64's powerful graphics features.

IBM

THE ABC'S OF THE IBM® PC

by Joan Lasselle and Carol Ramsay
100 pp., illustr, Ref. 0-102

This is the book that will take you through
the first crucial steps in learning to use the
IBM PC.

THE BEST OF IBM® PC
SOFTWARE

by Stanley R. Trost

144 pp., illustr, Ref. 0-104

Separates the wheat from the chaff in the
world of IBM PC software. Tells you what
to expect from the best available IBM PC
programs,

THE IBM® PC-DOS HANDBOOK
by Richard Allen King

144 pp., illustr, Ref. 0-103

Explains the PC disk operating system,
giving the user better control over the sys-
tem. Get the most out of your PC by
adapting its capabilities to your specific
needs.

BUSINESS GRAPHICS FOR THE
IBM® PC

by Nelson Ford

200 pp., illustr, Ref. 0-124

Ready-to-run programs for creating line
graphs, complex illustrative multiple bar
graphs, picture graphs, and more. An
ideal way to use your PC's business
capabilities!

THE IBM® PC CONNECTION

by James W. Coffron

200 pp., illustr, Ref. 0-127

Teaches elementary interfacing and
BASIC programming of the IBM PC for
connection to external devices and
household appliances.

BASIC EXERCISES FOR THE
IBM® PERSONAL COMPUTER

by J.P. Lamoitier
252 pp., 90 illustr, Ref. 0-088

Teaches IBM BASIC through actual prac-
tice, using graduated exercises drawn
from everyday applications.

USEFUL BASIC PROGRAMS
FOR THE IBM® PC

by Stanley R. Trost

144 pp., Ref. 0-111

This collection of programs takes full
advantage of the interactive capabilities of
your IBM Personal Computer. Financial
calculations, investment analysis, record
keeping, and math practice—made eas-
ier on your IBM PC.

YOUR FIRST IBM® PC
PROGRAM

by Rodnay Zaks

182 pp., illustr., Ref. 0-171

This well-illustrated book makes program-
ming easy for children and aduits.

THE COMPLETE GUIDE TO
YOUR IBM® PC JUNIOR

by Douglas Hergert

250 pp., illustr, Ref. 0-179

This comprehensive reference guide to
IBM’s most economical microcomputer
offers many practical applications and all
the helpful information you'll need to get
started with your IBM PC Junior.

DATA FILE PROGRAMMING ON
YOUR IBM® PC

by Alan Simpson

275 pp., illustr., Ref. 0-146

This book provides instructions and
examples of managing data files in
BASIC. Programming designs and devel-
opments are extensively discussed

Apple

THE EASY GUIDE TO YOUR
APPLE 1II®

by Joseph Kascmer

160 pp., illustr., Ref. 0-122

A friendly introduction to using the Apple
Il, Il plus and the new lle.

BASIC EXERCISES FOR THE
APPLE®

by J.P. Lamoitier

250 pp., 90 illustr, Ref, 0-084

Teaches Apple BASIC through actual
practice, using graduated exercises
drawn from everyday applications.

APPLE 1I* BASIC HANDBOOK
by Douglas Hergert

144 pp., illustr, Ref. 0-155

A complete listing with descriptions and
instructive examples of each of the Apple
Il BASIC keywords and functions. A
handy reference guide, organized like a
dictionary.

APPLE 1I®* BASIC PROGRAMS

IN MINUTES

by Stanley R. Trost

150 pp., illustr, Ref. 0-121

A collection of ready-to-run programs for
financial calculations, investment analysis,
record keeping, and many more home
and office applications. These programs
can be entered on your Apple Il plus or lle
in minutes!

YOUR FIRST APPLE lI®
PROGRAM

by Rodnay Zaks

150 pp., illustr, Ref. 0-136

A fully illustrated, easy-to-use introduction
to APPLE BASIC programming. Will have
the reader programming in a matter of
hours.

THE APPLE® CONNECTION

by James W. Coffron

264 pp., 120 illustr, Ref. 0-085
Teaches elementary interfacing and
BASIC programming of the Apple for con-
nection to external devices and house-
hold appliances.

TRS-80

YOUR COLOR COMPUTER

by Doug Mosher
350 pp., illustr., Ref. 0-097
Patience and humor guide the reader

through purchasing, setting up, program-
ming, and using the Radio Shack TRS-80/
TDP Series 100 Color Computer. A
complete introduction.

THE FOOLPROOF GUIDE TO
SCRIPSIT™ WORD

PROCESSING

by Jeff Berner

225 pp., illustr, Ref. 0-098

Everything you need to know about
SCRIPSIT—from starting out, to mastering
document editing. This user-friendly
guide is written in plain English, with a
touch of wit.

Timex/Sinclair
1000/ZX81

YOUR TIMEX/SINCLAIR 1000
AND ZXB1™

by Douglas Hergert

159 pp., illustr., Ref. 0-099

This book explains the set-up, operation,
and capabilities of the Timex/Sinclair
1000 and ZX81. Includes how to interface
peripheral devices, and introduces
BASIC programming.

THE TIMEX/SINCLAIR 1000™
BASIC HANDBOOK

by Douglas Hergert

170 pp., illustr, Ref. 0-113

A complete alphabetical listing with expla-
nations and examples of each word in the
T/S 1000 BASIC vocabulary; will allow
you quick, error-free programming of
your T/S 1000.

TIMEX/SINCLAIR 1000™ BASIC
PROGRAMS IN MINUTES

by Stanley R. Trost

150 pp., illustr, Ref. 0-119

A collection of ready-to-run programs for
financial calculations, investment analysis,
record keeping, and many more home
and office applications. These programs
can be entered on your T/S 1000 in
minutes!

MORE USES FOR YOUR
TIMEX/SINCLAIR 1000™
Astronomy on Your Computer
by Eric Burgess

176 pp., illustr., Ref. 0-112

Ready-to-run programs that turn your TV
into a planetanum.

Other Popular
Computers

YOUR FIRST TI 99/4A™
PROGRAM

by Rodnay Zaks

182 pp., illustr, Ref. 0-157

Colorfully illustrated, this book concen-
trates on the essentials of programming in
a clear, entertaining fashion.

THE RADIO SHACK®
NOTEBOOK COMPUTER

by Orson Kellogg

128 pp., illustr, Ref. 0-150

Whether you already have the Radio
Shack Model 100 notebook computer, or
are interested in buying one, this book will
clearly explain what it can do for you.

THE EASY GUIDE TO YOUR
COLECO ADAM™

by Thomas Blackadar

175 pp., illustr, Ref. 0-181

This quick reference guide shows you
how to get started on your Coleco Adam
with a minimum of technical jargon.

Software and
Applications

Operating Systems

THE CP/M® HANDBOOK

by Rodnay Zaks

320 pp., 100 illustr, Ref 0-048

An indispensable reference and guide to
CP/M—the most widely-used operating
system for small computers

MASTERING CP/M®

by Alan R. Miller

398 pp., illustr., Ref. 0-068

For advanced CP/M users or systems
programmers who want maximum use of
the CP/M operating system . . . takes up
where our CP/M Handbook leaves off.

THE BEST OF

CP/M® SOFTWARE

by John D. Halamka

250 pp., ilustr., Ref. 0-100

This book reviews tried-and-tested, com-
mercially available software for your
CP/M system.

REAL WORLD UNIX™

by John D. Halamka

250 pp., illustr., Ref. 0-093

This book is written for the beginning and
intermediate UNIX user in a practical,
straightforward manner, with specific
instructions given for many special
applications.

THE CP/M PLUS™ HANDBOOK
by Alan R. Miller

250 pp., illustr., Ref. 0-158

This guide is easy for the beginner to
understand, yet contains valuable infor-
mation for advanced users of CP/M Plus
(Version 3).

Business Software

INTRODUCTION TO
WORDSTAR™

by Arthur Naiman

202 pp., 30 illustr., Ref. 0-077

Makes it easy to learn how to use Word-
Star, a powerful word processing pro-
gram for personal computers.

PRACTICAL WORDSTAR™ USES
by Julie Anne Arca

200 pp., illustr, Ref. 0-107

Pick your most time-consuming office
tasks and this book will show you how to
streamiine them with WordStar.

MASTERING VISICALC®

by Douglas Hergert

217 pp., 140 illustr., Ref. 0-090
Explains how to use the VisiCalc “elec-
tronic spreadsheet” functions and pro-
vides examples of each. Makes using this
powerful program simple.

DOING BUSINESS WITH
VISICALC®

by Stanley R. Trost

260 pp., Ref. 0-086

Presents accounting and man
planning applications—from financial
statements to master budgets; from pric-
ing models to investment strategies.

DOING BUSINESS WITH
SUPERCALC™

by Stanley R. Trost

248 pp., illustr., Ref. 0-095

Presents accounting and management
planning applications—from financial
statements to master budgets; from pric-
ing models to investment strategies.

VISICALC® FOR SCIENCE AND
ENGINEERING

by Stanley R. Trost and
Charles Pomernacki

225 pp., illustr,, Ref. 0-096

More than 50 programs for solving techni-
cal problems in the science and engineer-
ing fields. Applications range from math
and statistics to electrical and electronic
engineering.

DOING BUSINESS WITH 1-2-.3™
by Stanley R. Trost

250 pp., illustr, Ref. 0-159

If you are a business professional using
the 1-2-3 software package, you will find
the spreadsheet and graphics models
provided in this book easy to use “as is”
in everyday business situations.

THE ABC'S OF 1-2-3™

by Chris Gilbert

225 pp., illustr, Ref. 0-168

For those new to the LOTUS 1-2-3 pro-
gram, this book offers step-by-step
instructions in mastering its spreadsheet,
data base, and graphing capabilities.

UNDERSTANDING dBASE II™

by Alan Simpson

220 pp., illustr,, Ref, 0-147

Learn programming techniques for mail-
ing label systems, bookkeeping and data
base management, as well as ways lo
interface dBASE |l with other software
systems.

DOING BUSINESS WITH

dBASE I™

by Stanley R. Trost

250 pp., illustr., Ref. 0-160

Learn to use dBASE |l for accounts
receivable, recording business income
and expenses, keeping personal records
and mailing lists, and much more.

DOING BUSINESS WITH
MULTIPLAN™
by Richard Allen King and

R. Trost
250 pp., illustr, Ref. 0-148
This book will show you how using Multi-
plan can be nearly as easy as learning to
use a pocket calculator. It presents a col-
lection of templates that can be applied
“as is” to business situations

DOING BUSINESS WITH PFS®
by Stanley R. Trost

250 pp., illustr, Ref. 0-161

This practical guide describes specific
business and personal applications in
detail. Learn to use PFS for accounting,
data analysis, mailing lists and more,

INFOPOWER: PRACTICAL
INFOSTAR™ USES

by Jule Anne Arca and

Charles F. Pirro

275 pp.. illustr., Ref. 0-108

This book gives you an overview of Info-
Star, including DataStar and ReportStar,
WordStar, MailMerge, and SuperSort.
Hands on exercises take you step-by-step
through real life business applications.

WRITING WITH EASYWRITER 1I™

by Douglas W. Topham
250 pp., illustr,, Ref. 0-141
Friendly style, handy illustrations, and

numerous sample exercises make it easy
to learn the EasyWriter Il word processing
system.

Business Applications

INTRODUCTION TO WORD
PROCESSING

by Hal Glatzer

205 pp., 140 illustr, Ref. 0-076
Explains in plain language what a word
processor can do, how it improves pro-
ductivity, how to use a word processor
and how to buy one wisely.

COMPUTER POWER FOR YOUR
LAW OFFICE

by Daniel Remer

225 pp., Ref. 0-109

How to use computers to reach peak pro-
ductivity in your law office, simply and
inexpensively.

OFFICE EFFICIENCY WITH
PERSONAL COMPUTERS

by Sheldon Crop

175 pp., illustr, Ref. 0-165

Planning for computerization of your
office? This book provides a simplified
discussion of the challenges involved for
everyone from business owner to clerical
worker.

COMPUTER POWER FOR YOUR
ACCOUNTING OFFICE

by James Morgan

250 pp., illustr, Ref. 0-164

This book is a convenient source of infor-
mation about computerizing you account-
ing office, with an emphasis on hardware
and software options.

Languages

C

UNDERSTANDING C

by Bruce Hunter

200 pp., Ref 0-123

Explains how to use the powerful C lan-
guage for a variety of applications. Some
programming experience assumed

FIFTY C PROGRAMS

by Bruce Hunter

200 pp.. illustr, Ref. 0-155

Beginning as well as intermediate C pro-
grammers will find this a useful guide to
programming techniques and specific
applications.

BASIC

YOUR FIRST BASIC PROGRAM
by Rodnay Zaks

150pp. illustr. in color, Ref. 0-129

A “how-to-program” book for the first time
computer user, aged 8 to 88.

FIFTY BASIC EXERCISES

by J. P. Lamoitier

232 pp., 90 illustr, Ref. 0-056

Teaches BASIC by actual practice, using
graduated exercises drawn from every-
day applications. All programs written in
Microsoft BASIC.

INSIDE BASIC GAMES

by Richard Mateosian

348 pp., 120 illustr., Ref. 0-055
Teaches interactive BASIC programming
through games. Games are written in
Microsoft BASIC and can run on the TRS-
80, Apple Il and PET/CBM.

BASIC FOR BUSINESS

by Douglas Hergeri

224 pp., 15 illustr, Ref. 0-080

A logically organized, no-nonsense intro-
duction to BASIC programming for busi-
ness applications. Includes many
fully-explained accounting programs, and
shows you how to write them.

EXECUTIVE PLANNING

WITH BASIC

by X. T. Bui

196 pp., 19 illustr, Ref. 0-083

An important collection of business man-
agement decision models in BASIC,
including Inventory Management (EOQ),
Critical Path Analysis and PERT, Financial
Ratio Analysis, Portfolio Management,
and much more.

BASIC PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miller

318 pp., 120 illustr, Ref. 0-073

This book from the “Programs for Scien-
tists and Engineers” series provides a
library of problem-solving programs while
developing proficiency in BASIC.

CELESTIAL BASIC

by Eric Burgess

300 pp.. 65 illustr, Ref. 0-087

A collection of BASIC programs that rap-
idly complete the chores of typical astro-
nomical computations. It's like having a
planetarium in your own home! Displays
apparent movement of stars, planets and
meteor showers,

YOUR SECOND BASIC
PROGRAM

by Gary Lippman

250 pp., illustr., Ref. 0-152

A sequel to Your First BASIC Program, this
book follows the same patient, detailed
approach and brings you to the next level
of programming skill.

Pascal

INTRODUCTION TO PASCAL
(Including UCSD Pascal™)

by Rodnay Zaks

420 pp., 130 illustr, Ref. 0-066

A step-by-step introduction for anyone
wanting to learn the Pascal language.
Describes UCSD and Standard Pascals.
No technical background is assumed.

THE PASCAL HANDBOOK

by Jacques Tiberghien

486 pp., 270 illustr, Ref. 0-053

A dictionary of the Pascal language,
defining every reserved word, operator,
procedure and function found in all major
versions of Pascal.

APPLE® PASCAL GAMES

by Douglas Hergert and
Joseph T. Kalash
372 pp.., 40 illustr, Ref. 0-074

A collection of the most popular computer
games in Pascal, challenging the reader
not only to play but to investigate how
games are implemented on the computer.

INTRODUCTION TO THE UCSD
p-SYSTEM™

by Charles W. Grant and Jon Butah
300 pp., 10 illustr., Ref. 0-061

A simple, clear introduction to the UCSD
Pascal Operating System; for beginners
through experienced programmers.

PASCAL PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miller

374 pp., 120 illustr, Ref. 0-058

A comprehensive collection of frequently
used algorithms for scientific and techni-
cal applications, programmed in Pascal.
Includes such programs as curve-fitting,
integrals and statistical techniques.

DOING BUSINESS WITH
PASCAL

by Richard Hergert and

Douglas Hergert

371 pp., illustr., Ref. 0-091

Practical tips for using Pascal in business
programming. Includes design consider-
ations, language extensions, and applica-
tions examples.

Assembly Language
Programming

PROGRAMMING THE 6502

by Rodnay Zaks

386 pp., 160 illustr, Ref. 0-046
Assembly language programming for the
6502, from basic concepts to advanced
data structures.

6502 APPLICATIONS

by Rodnay Zaks

278 pp.. 200 illustr, Ref. 0-015

Real-life application techniques: the input/
output book for the 6502.

ADVANCED 6502
PROGRAMMING

by Rodnay Zaks

292 pp., 140 illustr, Ref, 0-089

Third in the 6502 series. Teaches more
advanced programming techniques,
using games as a framework for learning.

PROGRAMMING THE Z80

by Rodnay Zaks

624 pp., 200 illustr, Ref. 0-069

A complete course in programming the
Z80 microprocessor and a thorough intro-
duction to assembly language.

Z80 APPLICATIONS

by James W. Coffron

288 pp., illustr, Ref. 0-094

Covers techniques and applications for
using peripheral devices with a Z80
based system.

PROGRAMMING THE 6809

by Rodnay Zaks and William Labiak
362 pp., 150 illustr, Ref. 0-078

This book explains how to program the
6809 in assembly language. No prior pro-
gramming knowledge required.

PROGRAMMING THE Z8000

by Richard Mateosian

298 pp., 124 illustr, Ref. 0-032

How to program the Z8000 16-bit micro-
processor. Includes a description of the
architecture and function of the Z8000
and its family of support chips.

PROGRAMMING THE 8086/8088
by James W. Coffron

300 pp., lllustr, Ref. 0-120

This book explains how to program the
8086 and BOB8 in assembly language. No
prior programming knowledge required.

Other Languages

FORTRAN PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miller

280 pp., 120 illustr., Ref. 0-082

In the “Programs for Scientists and Engi-
neers” series, this book provides specific
scientific and engineering application pro-
grams written in FORTRAN.

A MICROPROGRAMMED APL
IMPLEMENTATION

by Rodnay Zaks

350 pp., Ref. 0-005

An expert-level text presenting the com-
plete conceptual analysis and design of
an APL interpreter, and actual listing of
the microcode.

Hardware and
Peripherals

MICROPROCESSOR
INTERFACING TECHNIQUES
by Rodnay Zaks and Austin Lesea
456 pp., 400 illustr., Ref. 0-029

Complete hardware and software inter-
connect techniques, including D to A con-
version, peripherals, standard buses and
troubleshooting.

THE RS-232 SOLUTION

by Joe Campbell

225 pp., illustr, Ref. 0-140

Finally, a book that will show you how to
correctly interface your computer to any
RS-232-C peripheral.

USING CASSETTE RECORDERS
WITH COMPUTERS

by James Richard Cook

175 pp., illustr, Ref. 0-169

Whatever your computer or application,
you will find this book helpful in explaining
details of cassette care and maintenance.

For a complete catalog of our publications

please contact:

U.SA.

SYBEX, Inc.

2344 Sixth Street

Berkeley,

California 94710

Tel: (800) 227-2346
(415) 848-8233

Telex: 336311

FRANCE

SYBEX

6-8 Impasse du Curé
75018 Paris

France

Tel: 01/203-9595
Telex: 211801

GERMANY
SYBEX-Verlag GmbH
Vogelsanger Weg 111
4000 Dusseldorf 30
West Germany

Tel: (0211) 626411
Telex: 8588163

&

DON'T MISS THIS HANDY GUIDE TO
WORD PROCESSING WITH YOUR
COLECO ADAM

L

WORD PROCESSING WITH YOUR

COLECO ADAM

CAROLE ALDEN

Now that you have a working knowledge of your Coleco Adam, you'll
want to learn how to streamline your writing chores with the word process-
ing features of the Adam. Here is a book to show you how. The friendly,
hands-on approach is designed to help the complete beginner master the
basics quickly and easily. You'll find many examples of practical applica-
tions for every member of the family, as well as tips on caring for the Adam
and information about future add-ons.

ISBN: 0-89588-182-9, 175 pp., illustrated, 6"x 9"

THE EASY GUIDE TO YOUR

JLECO ADAM

The Easy Guide to Your Coleco Adam is the next best thing to having
your own personal computer expert right there to coach you through
every step! This book is designed to take you all the way from set-up to
a thorough working knowledge of your machine. In just a few hours
you’ll be off and running, loading software, entering data, and learn-
ing to use:

the word processor
graphics features
cassettes

the Adam printer
BASIC programming
and more!

Everything you need to know to get started on your Coleco Adam is
revealed here in a friendly, jargon-free style. This is truly computing
made easy!

ABOUT THE AUTHOR:Thomas Blackadar is a professional writer
who has been using computers for more than ten years. A graduate of
Princeton University, he has studied at the University of Fribourg,
Switzerland. He is the author of The Best of T| 99/4A Cartridges, The
Easy Guide to Your Atari 600XL/800XL, The Best of VIC-20 Software,
and The Best of Commodore 64 Software.

| 00181
2521100995

ISBN 0-89548-1681-0

